Skip to main content

Tibial Component

What Are the Best Configurations for Durability?

  • Chapter
  • First Online:
The Artificial Knee
  • 385 Accesses

Abstract

In the earliest artificial knees, the tibial component designs varied considerably. The Gunston, together with unicompartmental knees, used small separate parts for each condyle. The Freeman-Swanson used a plate of plastic covering the entire proximal tibial surface. The Townley used a single plastic component with a central slot for cruciate ligament preservation. In all cases there were some problems of fixation to the bone, due to excessive stresses on the trabecular bone, to tilting of a component which transmitted all the shear and torque forces, or to deformation of thin all-plastic components. As a result of this experience, designs were made with partial conformity to reduce the shear and torque. Metal-backing was used to stiffen the component. However the most effective change was to use a 40 mm fixation peg in the center of the component. Even if there was inadequate cement penetration on the flat tibial surface, the central peg maintained strong fixation. Another advance in design was modularity, where the plastic insert was fixed into a metal tray. In this way, different thicknesses could easily be tested at surgery to achieve ideal soft tissue balancing. A surprising result has been that in long-term follow-up, all-plastic components have equivalent durability to metal-backed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abernethy PJ, Robinson CM, Fowler RM. Fracture of the metal tibial tray after kinematic total knee replacement. A common cause of early aseptic failure. J Bone Joint Surg Br. 1996;78(2):220–5.

    Article  CAS  Google Scholar 

  • Ahir SP, Blunn GW, Haider H, Walker PS. Evaluation of a testing method for the fatigue performance of total knee tibial trays. J Biomech. 1999;32(10):1049–57.

    Article  CAS  Google Scholar 

  • Attenborough CG. Total knee replacement using the stabilized gliding prosthesis. Ann R Coll Surg Engl. 1976;58(1):4–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel DL, Burstein AH, Santavicca EA, Insall JN. Performance of the tibial component in total knee replacement. J Bone Joint Surg Am. 1982;64(7):1026–33.

    Article  CAS  Google Scholar 

  • Behrens JC, Walker PS, Shoji H. Variations in strength and structure of cancellous bone at the knee. J Biomech. 1974;7(3):201–7.

    Article  CAS  Google Scholar 

  • Cloutier JM. Results of total knee arthroplasty with a non-constrained prosthesis. J Bone Joint Surg Am. 1983;65(7):906–19.

    Article  CAS  Google Scholar 

  • Eftekhar NS. Adjustable intramedullary replacement of the knee: evolution of surgical technique and prosthesis. Clin Orthop Relat Res. 1978;(137):235–43.

    Google Scholar 

  • Freeman MA, Swanson SA, Todd RC. Total replacement of the knee using the Freeman-Swanson knee prosthesis. Clin Orthop Relat Res. 1973;(94):153–70.

    Google Scholar 

  • Gudnason A, Hailer NP, A WD, Sundberg M, Robertsson O. All-polyethylene versus metal-backed tibial components-an analysis of 27,733 cruciate-retaining total knee replacements from the Swedish knee arthroplasty register. J Bone Joint Surg Am. 2014;96(12):994–9.

    Article  Google Scholar 

  • Gunston FH. Polycentric knee arthroplasty. Prosthetic simulation of normal knee movement. J Bone Joint Surg (Br). 1971;53(2):272–7.

    Article  CAS  Google Scholar 

  • Houdek MT, Watts CD, Wyles CC, Martin JR, Trousdale RT, Taunton MJ. Metal or modularity: why do metal-backed tibias have inferior outcomes to all-polyethylene tibial components in patients with osteoarthritis. J Arthroplast. 2017;32(3):836–42.

    Article  Google Scholar 

  • Hvid I, Hansen SL. Trabecular bone strength patterns at the proximal tibial epiphysis. J Orthop Res. 1985;3:464–72.

    Article  CAS  Google Scholar 

  • Lewis JL, Askew MJ, Jaycox DP. A comparative evaluation of tibial component designs of total knee prostheses. J Bone Joint Surg Am. 1982;64(1):129–35.

    Article  CAS  Google Scholar 

  • Meier M, Webb J, Collins JE, Beckman J, Fitz W. Do modern total knee replacements improve tibial coverage? Knee Surg Sports Traumatol Arthrosc. 2018;26:3219–29.

    Article  Google Scholar 

  • Murase K, Crowninshield RD, Pedersen DR, Chang TS. An analysis of tibial component design in total knee arthroplasty. J Biomech. 1983;16(1):13–22.

    Article  CAS  Google Scholar 

  • Paganelli JV, Skinner HB, Mote CD. Prediction of fatigue failure of a total knee replacement tibial plateau using finite element analysis. Orthopedics. 1988;11(8):1161–8.

    CAS  PubMed  Google Scholar 

  • Pritchett JW. Bicruciate-retaining Total knee replacement provides satisfactory function and implant survivorship at 23 years. Clin Orthop Relat Res. 2015;473(7):2327–33.

    Article  Google Scholar 

  • Ranawat CS, Shine JJ. Duo-condylar total knee arthroplasty. Clin Orthop Relat Res. 1973;94:185–95.

    Article  Google Scholar 

  • Sisko ZW, Teeter MG, Lanting BA, et al. Current total knee designs: does baseplate roughness or locking mechanism design affect polyethylene backside wear? Clin Orthop Relat Res. 2017;475(12):2970–80.

    Article  Google Scholar 

  • Skolnick MD, Coventry MB, Ilstrup DM. Geometric total knee arthroplasty. A two-year follow-up study. J Bone Joint Surg Am. 1976;58(6):749–53.

    Article  CAS  Google Scholar 

  • Sledge CB, Ewald FC. Total knee arthroplasty experience at the Robert Breck Brigham hospital. Clin Orthop Relat Res. 1979;(145):78–84.

    Google Scholar 

  • Swanson SA, Freeman MA, Heath JC. Laboratory tests on total joint replacement prostheses. J Bone Joint Surg (Br). 1973;55(4):759–73.

    Article  CAS  Google Scholar 

  • Townley CO. The anatomic total knee resurfacing arthroplasty. Clin Orthop Relat Res. 1985;(192):82–96.

    Google Scholar 

  • Walker PS, Hajek JV. The load-bearing area in the knee joint. J Biomech. 1972;5(6):581–9.

    Article  CAS  Google Scholar 

  • Walker PS, Hsieh HH. Conformity in condylar replacement knee prosthesis. J Bone Joint Surg. 1977;59(2):222–8.

    Article  CAS  Google Scholar 

  • Walker PS, Ranawat C, Insall J. Fixation of the tibial components of condylar replacement knee prostheses. J Biomech. 1976;9(4):269–75.

    Article  CAS  Google Scholar 

  • Westrich GH, Laskin RS, Haas SB, Sculco TP. Resection specimen analysis of tibial coverage in total knee arthroplasty. Clin Orthop Relat Res. 1994;309:163–75.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Walker, P.S. (2020). Tibial Component. In: The Artificial Knee. Springer, Cham. https://doi.org/10.1007/978-3-030-38171-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38171-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38170-7

  • Online ISBN: 978-3-030-38171-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics