Skip to main content

Neural and Genetic Mechanisms of Dyslexia

  • Chapter
  • First Online:
Translational Neuroscience of Speech and Language Disorders

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

Dyslexia is a common neurodevelopmental disorder and is marked by the failure to acquire reading in spite of normal nonverbal intelligence and adequate schooling. In spite of the plethora of interventions on the market, none claim 100% success and many individuals with dyslexia never achieve age-appropriate reading skills. This result is likely due to an increasingly accepted level of heterogeneity in this population, not just in the behavioral deficits present but in the core neural and genetic mechanisms as well. The differences in genetics, especially, have led to significant challenges for researchers to determine the biological mechanisms underlying dyslexia and optimize customized intervention options. Animal models are appealing for this type of research, because individual genes can be manipulated and the results studied in an ethical manner. This approach has led to new insights on the neurological and genetic causes of dyslexia but raises new questions about how well these models represent the biological underpinnings of this disorder in humans. In this chapter, I discuss the history of mechanism research in humans with dyslexia, recent approaches to tackling these questions in animal models, and the relationship between these findings and those in humans. I also discuss potential applications for this approach in the future as well as the limitations of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A1:

Primary auditory cortex

DYS:

Dyslexia

PA:

Phonological awareness

RAN:

Rapid automatized naming

SES:

Socioeconomic status

SNP:

Single nucleotide polymorphism

TD:

Typically developing

References

  • Bates, T. C., Luciano, M., Medland, S. E., Montgomery, G. W., Wright, M. J., & Martin, N. G. (2011). Genetic variance in a component of the language acquisition device: ROBO1 polymorphisms associated with phonological buffer deficits. Behavior Genetics, 41(1), 50–57.

    PubMed  Google Scholar 

  • Boets, B., de Beeck, H., & Vandermosten, M. (2013). Intact but less accessible phonetic representations in adults with dyslexia. Science, 342(6163), 1251–1254.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burbridge, T. J., Wang, Y., Volz, A. J., Peschansky, V. J., Lisann, L., Galaburda, A. M., … Rosen, G. D. (2008). Postnatal analysis of the effect of embryonic knockdown and overexpression of candidate dyslexia susceptibility gene homolog Dcdc2 in the rat. Neuroscience, 152(3), 723–733.

    CAS  PubMed  Google Scholar 

  • Cao, F., Bitan, T., Chou, T.-L., Burman, D. D., & Booth, J. R. (2006). Deficient orthographic and phonological representations in children with dyslexia revealed by brain activation patterns. Journal of Child Psychology and Psychiatry, 47(10), 1041–1050. https://doi.org/10.1111/j.1469-7610.2006.01684.x

    Article  PubMed  Google Scholar 

  • Centanni, T., Booker, A., Chen, F., Sloan, A., Carraway, R., Rennaker, R., … Kilgard, M. (2016). Knockdown of dyslexia-gene Dcdc2 interferes with speech sound discrimination in continuous streams. Journal of Neuroscience, 36(17), 4895–4906.

    Google Scholar 

  • Centanni, T., Booker, A., Sloan, A., Chen, F., Maher, B. J., Carraway, R. S., … Kilgard, M. P. (2013). Knockdown of the dyslexia-associated gene Kiaa0319 impairs temporal responses to speech stimuli in rat primary auditory cortex. Cerebral Cortex, 24(7), 1753–1766. https://doi.org/10.1093/cercor/bht028

  • Centanni, T., Chen, F., Booker, A., Engineer, C., Sloan, A., Rennaker, R., … Kilgard, M. (2014). Speech sound processing deficits and training-induced neural plasticity in rats with dyslexia gene knockdown. PLOS ONE, 9(5), e98439. https://doi.org/10.1371/journal.pone.0098439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Centanni, T. M., Sloan, A. M., Reed, A. C., Engineer, C. T., II, R, R., & Kilgard, M. P. (2013). Detection and identification of speech sounds using cortical activity patterns. Neuroscience, 258, 292–306.

    PubMed  Google Scholar 

  • Centanni, T., Pantazis, D., Truong, D., Gruen, J., Gabrieli, J., & Hogan, T. (2018). Increased variability of stimulus-driven cortical responses is associated with genetic variability in children with and without dyslexia. Developmental Cognitive Neuroscience. https://doi.org/10.1016/j.dcn.2018.05.008

  • Centanni, T., Sanmann, J., Green, J., Iuzzini-Seigel, J., Bartlett, C., Sanger, W., & Hogan, T. (2015). The role of candidate-gene CNTNAP2 in childhood apraxia of speech and specific language impairment. American Journal of Medical Genetics, Part B, 168(7), 536–543.

    CAS  Google Scholar 

  • Che, A., Girgenti, M. J., & LoTurco, J. (2014). The dyslexia-associated gene Dcdc2 is required for spike-timing precision in mouse neocortex. Biological Psychiatry, 76(5), 387–396. https://doi.org/10.1016/j.biopsych.2013.08.018

    Article  CAS  PubMed  Google Scholar 

  • Che, A., Truong, D., Fitch, R., & LoTurco, J. (2016). Mutation of the dyslexia-associated gene Dcdc2 enhances glutamatergic synaptic transmission between layer 4 neurons in mouse neocortex. Cerebral Cortex, 26(9), 3705–3718.

    PubMed  PubMed Central  Google Scholar 

  • Choudhry, Z., Rikani, A. A., Choudhry, A. M., Tariq, S., Zakaria, F., Asghar, M. W., … Mobassarah, N. J. (2014). Sonic hedgehog signalling pathway: A complex network. Annals of Neurosciences, 21(1), 28–31. https://doi.org/10.5214/ans.0972.7531.210109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciani, L., & Salinas, P. C. (2005). WNTS in the vertebrate nervous system: From patterning to neuronal connectivity. Nature Reviews Neuroscience, 6(5), 351–362. https://doi.org/10.1038/nrn1665

    Article  CAS  PubMed  Google Scholar 

  • Cicchini, G. M., Marino, C., Mascheretti, S., Perani, D., & Morrone, M. C. (2015). Strong motion deficits in dyslexia associated with DCDC2 gene alteration. Journal of Neuroscience, 35(21), 8059–8064. https://doi.org/10.1523/JNEUROSCI.5077-14.2015

    Article  CAS  PubMed  Google Scholar 

  • Condro, M. C., & White, S. a. (2014). Recent advances in the genetics of vocal learning. Comparative Cognition & Behavior Reviews, 9, 75–98. https://doi.org/10.3819/ccbr.2014.90003

    Article  Google Scholar 

  • Currier, T. A., Etchegaray, M. A., Haight, J. L., Galaburda, A. M., & Rosen, G. D. (2011). The effects of embryonic knockdown of the candidate dyslexia susceptibility gene homologue Dyx1c1 on the distribution of GABAergic neurons in the cerebral cortex. Neuroscience, 172, 535–546.

    CAS  PubMed  Google Scholar 

  • Darki, F., & Peyrard-Janvid, M. (2014). DCDC2 polymorphism is associated with left temporoparietal gray and white matter structures during development. Journal of Neuroscience, 34(43), 14455–14462.

    PubMed  Google Scholar 

  • Darki, F., Peyrard-Janvid, M., Matsson, H., Kere, J., & Klingberg, T. (2012). Three dyslexia susceptibility genes, DYX1C1, DCDC2, and KIAA0319, affect temporo-parietal white matter structure. Biological Psychiatry, 72(8), 671–676.

    CAS  PubMed  Google Scholar 

  • Denckla, M., & Rudel, R. (1976). Rapid ’automatized’naming (RAN): Dyslexia differentiated from other learning disabilities. Neuropsychologia, 14(4), 471–479.

    CAS  PubMed  Google Scholar 

  • Dennis, M. Y., Paracchini, S., Scerri, T. S., Prokunina-Olsson, L., Knight, J. C., Wade-Martins, R., … Monaco, A. P. (2009). A common variant associated with dyslexia reduces expression of the KIAA0319 gene. PLoS Genetics, 5(3), e1000436.

    PubMed  PubMed Central  Google Scholar 

  • Farquharson, K., Centanni, T. M., Franzluebbers, C. E., & Hogan, T. P. (2014). Phonological and lexical influences on phonological awareness in children with specific language impairment and dyslexia. Frontiers in Psychology, 5(838). https://doi.org/10.3389/fpsyg.2014.00838

  • Fisher, S. E., & DeFries, J. C. (2002). Developmental dyslexia: Genetic dissection of a complex cognitive trait. Nature Reviews Neuroscience, 3(10), 767–780.

    CAS  PubMed  Google Scholar 

  • Francks, C., Paracchini, S., Smith, S. D., Richardson, A. J., Scerri, T. S., Cardon, L. R., … Pennington, B. F. (2004). A 77-kilobase region of chromosome 6p22. 2 is associated with dyslexia in families from the United Kingdom and from the United States. The American Journal of Human Genetics, 75(6), 1046–1058.

    CAS  PubMed  Google Scholar 

  • Furnes, B., & Samuelsson, S. (2010). Predicting reading and spelling difficulties in transparent and opaque orthographies: A comparison between Scandinavian and US/Australian children. Dyslexia, 16(2), 119–142. https://doi.org/10.1002/dys.401

    Article  PubMed  PubMed Central  Google Scholar 

  • Gabel, L., Marin, I., LoTurco, J., Che, A., Murphy, C., Manglani, M., & Kass, S. (2011). Mutation of the dyslexia-associated gene Dcdc2 impairs LTM and visuo-spatial performance in mice. Genes, Brain, and Behavior, 10(8), 868–875.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galaburda, A. M., & Kemper, T. L. (1979). Cytoarchitectonic abnormalities in developmental dyslexia: A case study. Annals of Neurology, 6(2), 94–100.

    CAS  PubMed  Google Scholar 

  • Galaburda, A. M., LoTurco, J., Ramus, F., Fitch, R. H., & Rosen, G. D. (2006). From genes to behavior in developmental dyslexia. Nature Neuroscience, 9(10), 1213–1217.

    CAS  PubMed  Google Scholar 

  • Galaburda, A. M., Sherman, G. F., Rosen, G. D., Aboitiz, F., & Geschwind, N. (1985). Developmental dyslexia: Four consecutive patients with cortical anomalies. Annals of Neurology, 18(2), 222–233.

    CAS  PubMed  Google Scholar 

  • Georgiou, G. K., Parrila, R., & Liao, C.-H. (2008). Rapid naming speed and reading across languages that vary in orthographic consistency. Reading and Writing, 21(9), 885–903. https://doi.org/10.1007/s11145-007-9096-4

    Article  Google Scholar 

  • Gillon, G. T. (2005). Phonological awareness. Language Speech and Hearing Services in Schools, 36(4), 281. https://doi.org/10.1044/0161-1461(2005/028)

    Article  Google Scholar 

  • Gori, S., Mascheretti, S., & Giora, E. (2014). The DCDC2 intron 2 deletion impairs illusory motion perception unveiling the selective role of magnocellular-dorsal stream in reading (dis)ability. Cerebral Cortex, 25(6), 1685–1695.

    PubMed  Google Scholar 

  • Groszer, M., Keays, D., Deacon, R. M. J., de Bono, J. P., Prasad-Mulcare, S., Gaub, S., … Fisher, S. E. (2008). Impaired synaptic plasticity and motor learning in mice with a point mutation implicated in human speech deficits. Current Biology, 18(5), 354–362. https://doi.org/10.1016/j.cub.2008.01.060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guidi, L. G., Mattley, J., Martinez-Garay, I., Monaco, A. P., Linden, J. F., Velayos-Baeza, A., & Molnár, Z. (2017). Knockout mice for dyslexia susceptibility gene homologs KIAA0319 and KIAA0319L have unaffected neuronal migration but display abnormal auditory processing. Cerebral Cortex, 27(12), 5831–5845. https://doi.org/10.1093/cercor/bhx269

    Article  PubMed  PubMed Central  Google Scholar 

  • Haesler, S., Rochefort, C., Georgi, B., Licznerski, P., Osten, P., & Scharff, C. (2007). Incomplete and inaccurate vocal imitation after knockdown of FoxP2 in songbird basal ganglia nucleus area X. PLoS Biology, 5(12), e321. https://doi.org/10.1371/journal.pbio.0050321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heim, S., Pape-Neumann, J., van Ermingen-Marbach, M., Brinkhaus, M., & Grande, M. (2014). Shared vs. specific brain activation changes in dyslexia after training of phonology, attention, or reading. Brain Structure & Function (Snowling 2000). https://doi.org/10.1007/s00429-014-0784-y

  • Hoeft, F., McCandliss, B. D., Black, J. M., Gantman, A., Zakerani, N., Hulme, C., … Gabrieli, J. D. E. (2011). Neural systems predicting long-term outcome in dyslexia. Proceedings of the National Academy of Sciences, 108(1), 361–366. https://doi.org/10.1073/pnas.1008950108

    Article  Google Scholar 

  • Hornickel, J., & Kraus, N. (2013). Unstable representation of sound: A biological marker of dyslexia. Journal of Neuroscience, 33(8), 3500–3504.

    CAS  PubMed  Google Scholar 

  • Humphreys, P., Kaufmann, W. E., & Galaburda, A. M. (1990). Developmental dyslexia in women: Neuropathological findings in three patients. Annals of Neurology, 28(6), 727–738.

    CAS  PubMed  Google Scholar 

  • Kato, M., Okanoya, K., Koike, T., Sasaki, E., Okano, H., Watanabe, S., & Iriki, A. (2014). Human speech-and reading-related genes display partially overlapping expression patterns in the marmoset brain. Brain and Language, 133, 26–38.

    PubMed  Google Scholar 

  • Kidd, T., Brose, K., Mitchell, K., Fetter, R., Tessier-Lavigne, M., Goodman, C., & Tear, G. (1998). Roundabout controls axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors. Cell, 92(2), 205–215.

    CAS  PubMed  Google Scholar 

  • Korhonen, T. (1995). The persistence of rapid naming problems in children with reading disabilities a nine-year follow-up. Journal of Learning Disabilities, 28(4), 232–239.

    CAS  PubMed  Google Scholar 

  • Lai, C. S., Fisher, S. E., Hurst, J. A., Vargha-Khadem, F., & Monaco, A. P. (2001). A forkhead-domain gene is mutated in a severe speech and language disorder. Nature, 413(6855), 519–523. https://doi.org/10.1038/35097076

    Article  CAS  PubMed  Google Scholar 

  • Lamminmäki, S., Massinen, S., Nopola-Hemmi, J., Kere, J., & Hari, R. (2012). Human ROBO1 regulates interaural interaction in auditory pathways. Journal of Neuroscience, 32(3), 966–971.

    PubMed  Google Scholar 

  • Landerl, K., Ramus, F., Moll, K., Lyytinen, H., Leppänen, P. H. T., Lohvansuu, K., … Schulte-Körne, G. (2013). Predictors of developmental dyslexia in European orthographies with varying complexity. Journal of Child Psychology and Psychiatry, 54(6), 686–694. https://doi.org/10.1111/jcpp.12029

    Article  PubMed  Google Scholar 

  • Landerl, K., Wimmer, H., & Frith, U. (1997). The impact of orthographic consistency on dyslexia: A German-English comparison. Cognition, 63(3), 315–334. https://doi.org/10.1016/S0010-0277(97)00005-X

    Article  CAS  PubMed  Google Scholar 

  • Lehongre, K., Ramus, F., Villiermet, N., Schwartz, D., & Giraud, A. L. (2011). Altered low-gamma sampling in auditory cortex accounts for the three main facets of dyslexia. Neuron, 72(6), 1080–1090.

    CAS  PubMed  Google Scholar 

  • Lervåg, A., & Hulme, C. (2009). Rapid automatized naming (RAN) taps a mechanism that places constraints on the development of early reading fluency. Psychological Science, 20(8), 1040–1048. https://doi.org/10.1111/j.1467-9280.2009.02405.x

    Article  PubMed  Google Scholar 

  • Lind, P. A., Luciano, M., Wright, M. J., Montgomery, G. W., Martin, N. G., & Bates, T. C. (2010). Dyslexia and DCDC2: Normal variation in reading and spelling is associated with DCDC2 polymorphisms in an Australian population sample. European Journal of Human Genetics, 18(6), 668–673.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lovett, M. W. (1984). The search for subtypes of specific reading disability: Reflections from a cognitive perspective. Annals of Dyslexia, 34(1), 153–178. https://doi.org/10.1007/BF02663618

    Article  CAS  PubMed  Google Scholar 

  • Marino, C., Giorda, R., Lorusso, M. L., Vanzin, L., Salandi, N., Nobile, M., … Battaglia, M. (2005). A family-based association study does not support DYX1C1 on 15q21.3 as a candidate gene in developmental dyslexia. European Journal of Human Genetics, 13(4), 491–499.

    CAS  PubMed  Google Scholar 

  • Martinez-Garay, I., Guidi, L. G., Holloway, Z. G., Bailey, M. A. G., Lyngholm, D., Schneider, T., … Monaco, A. P. (2016). Normal radial migration and lamination are maintained in dyslexia-susceptibility candidate gene homolog Kiaa0319 knockout mice. Brain Structure & Function, 1–18. https://doi.org/10.1007/s00429-016-1282-1

  • Massinen, S., Hokkanen, M.-E., Matsson, H., Tammimies, K., Tapia-Páez, I., Dahlström-Heuser, V., … Kere, J. (2011). Increased expression of the dyslexia candidate gene DCDC2 affects length and signaling of primary cilia in neurons. PLOS ONE, 6(6), e20580.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meng, H., Powers, N. R., Tang, L., Cope, N. A., Zhang, P.-X., Fuleihan, R., … Gruen, J. R. (2011). A dyslexia-associated variant in DCDC2 changes gene expression. Behavior Genetics, 41(1), 58–66. https://doi.org/10.1007/s10519-010-9408-3

    Article  PubMed  Google Scholar 

  • Meyer, M. S., Wood, F. B., Hart, L. A., & Felton, R. H. (1998). Selective predictive value of RAN in poor readers. Journal of Learning Disabilities, 31(2), 106–117.

    CAS  PubMed  Google Scholar 

  • Meyler, A., Keller, T. A., Cherkassky, V. L., Gabrieli, J. D. E., & Just, M. A. (2008). Modifying the brain activation of poor readers during sentence comprehension with extended remedial instruction: A longitudinal study of neuroplasticity. Neuropsychologia, 46(10), 2580–2592. https://doi.org/10.1016/j.neuropsychologia.2008.03.012

    Article  PubMed  PubMed Central  Google Scholar 

  • Monzalvo, K., Fluss, J., Billard, C., & Dehaene, S. (2012). Cortical networks for vision and language in dyslexic and normal children of variable socio-economic status. Neuroimage, 61(1), 258–274.

    PubMed  Google Scholar 

  • Neef, N. E., Müller, B., Liebig, J., Schaadt, G., Grigutsch, M., Gunter, T. C., … Friederici, A. D. (2017). Dyslexia risk gene relates to representation of sound in the auditory brainstem. Developmental Cognitive Neuroscience. https://doi.org/10.1016/j.dcn.2017.01.008

  • Neef, N. E., Schaadt, G., & Friederici, A. D. (2016). Auditory brainstem responses to stop consonants predict literacy. Clinical Neurophysiology, 128(3), 484–494. https://doi.org/10.1016/j.clinph.2016.12.007

    Article  PubMed  Google Scholar 

  • Norton, E. S., Black, J. M., Stanley, L. M., Tanaka, H., Gabrieli, J. D. E., Sawyer, C., & Hoeft, F. (2014). Functional neuroanatomical evidence for the double-deficit hypothesis of developmental dyslexia. Neuropsychologia, 61(1), 235–246. https://doi.org/10.1016/j.neuropsychologia.2014.06.015

    Article  PubMed  PubMed Central  Google Scholar 

  • Norton, E., & Wolf, M. (2012). Rapid automatized naming (RAN) and reading fluency: Implications for understanding and treatment of reading disabilities. Annual Review of Psychology, 63, 427–452.

    PubMed  Google Scholar 

  • Paracchini, S., Steer, C., Buckingham, L.-L., Morris, A., Ring, S., Scerri, T., … Golding, J. (2008). Association of the KIAA0319 dyslexia susceptibility gene with reading skills in the general population. American Journal of Psychiatry, 165(12), 1576–1584.

    Google Scholar 

  • Paracchini, S., Thomas, A., Castro, S., Lai, C., Paramasivam, M., Wang, Y., … Monaco, A. (2006). The chromosome 6p22 haplotype associated with dyslexia reduces the expression of KIAA0319, a novel gene involved in neuronal migration. Human Molecular Genetics, 15(10), 1659–1666.

    CAS  PubMed  Google Scholar 

  • Paulesu, E., Frith, U., Snowling, M., Gallagher, A., Morton, J., Frackowiak, R. S. J., & Frith, C. D. (1996). Is developmental dyslexia a disconnection syndrome? Evidence from PET scanning. Brain, 119(1), 143–157.

    PubMed  Google Scholar 

  • Pennington, B. F., Gilger, J. W., Pauls, D., Smith, S. A., Smith, S. D., & DeFries, J. C. (1991). Evidence for major gene transmission of developmental dyslexia. JAMA, 266(11), 1527–1534.

    Google Scholar 

  • Penolazzi, B., Spironelli, C., Vio, C., & Angrilli, A. (2010). Brain plasticity in developmental dyslexia after phonological treatment: A beta EEG band study. Behavioural Brain Research, 209(1), 179–182.

    PubMed  Google Scholar 

  • Perrachione, T. K., Del Tufo, S., Winter, R., Murtagh, J., Cyr, A., Chang, P., … Gabrieli, J. (2016). Dysfunction of rapid neural adaptation in dyslexia. Neuron, 92(6), 1383–1397.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peter, B., Raskind, W. H., Matsushita, M., Lisowski, M., Vu, T., Berninger, V. W., … Brkanac, Z. (2011). Replication of CNTNAP2 association with nonword repetition and support for FOXP2 association with timed reading and motor activities in a dyslexia family sample. Journal of Neurodevelopmental Disorders, 3(1), 39–49. https://doi.org/10.1007/s11689-010-9065-0

    Article  PubMed  Google Scholar 

  • Peterson, R. L., & Pennington, B. F. (2012). Developmental dyslexia. The Lancet, 379(9830), 1997–2007.

    Google Scholar 

  • Petrin, A. L., Giacheti, C. M., Maximino, L. P., Abramides, D. V. M., Zanchetta, S., Rossi, N. F., … Murray, J. C. (2010). Identification of a microdeletion at the 7q33-q35 disrupting the CNTNAP2 gene in a Brazilian stuttering case. American Journal of Medical Genetics Part A, 152A(12), 3164–3172. https://doi.org/10.1002/ajmg.a.33749

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinel, P., Fauchereau, F., Moreno, A., Barbot, A., Lathrop, M., Zelenika, D., … Dehaene, S. (2012). Genetic variants of FOXP2 and KIAA0319/TTRAP/THEM2 locus are associated with altered brain activation in distinct language-related regions. Journal of Neuroscience, 32(3), 817–825. https://doi.org/10.1523/JNEUROSCI.5996-10.2012

    Article  CAS  PubMed  Google Scholar 

  • Poliak, S., & Gollan, L. (2001). Localization of Caspr2 in myelinated nerves depends on axon–glia interactions and the generation of barriers along the axon. Journal of Neuroscience, 21(19), 7568–7575.

    CAS  PubMed  Google Scholar 

  • Powers, N. R., Eicher, J. D., Miller, L. L., Kong, Y., Smith, S. D., Pennington, B. F., … Gruen, J. R. (2016). The regulatory element READ1 epistatically influences reading and language, with both deleterious and protective alleles. Journal of Medical Genetics, 53(3), 163–171. https://doi.org/10.1136/jmedgenet-2015-103418

    Article  CAS  PubMed  Google Scholar 

  • Raca, G., Baas, B. S., Kirmani, S., Laffin, J. J., Jackson, C., Strand, E., … Shriberg, L. D. (2013). Childhood apraxia of speech (CAS) in two patients with 16p11.2 microdeletion syndrome. European Journal of Human Genetics: EJHG, 21(4), 455–459. https://doi.org/10.1038/ejhg.2012.165

    Article  CAS  PubMed  Google Scholar 

  • Ramus, F., & Szenkovits, G. (2008). What phonological deficit? The Quarterly Journal of Experimental Psychology, 61(1), 129–141.

    PubMed  Google Scholar 

  • Ranasinghe, K. G., Vrana, W. A., Matney, C. J., & Kilgard, M. P. (2012). Neural mechanisms supporting robust discrimination of spectrally and temporally degraded speech. JARO Journal of the Association for Research in Otolaryngology, 13(4), 527–542.

    PubMed  PubMed Central  Google Scholar 

  • Rasband, M. (2004). It’s “juxta” potassium channel. Journal of Neuroscience Research. https://doi.org/10.1002/jnr.20073/full

  • Richards, T. L., & Berninger, V. W. (2008). Abnormal fMRI connectivity in children with dyslexia during a phoneme task: Before but not after treatment. Journal of Neurolinguistics, 21(4), 294–304. https://doi.org/10.1016/j.jneuroling.2007.07.002

    Article  PubMed  PubMed Central  Google Scholar 

  • Romeo, R. R., Christodoulou, J. A., Halverson, K. K., Murtagh, J., Cyr, A. B., Schimmel, C., … Gabrieli, J. D. E. (2017). Socioeconomic status and reading disability: Neuroanatomy and plasticity in response to intervention. Cerebral Cortex, 1–16. https://doi.org/10.1093/cercor/bhx131

  • Sasaki, E., Suemizu, H., Shimada, A., Hanazawa, K., Oiwa, R., Kamioka, M., … Nomura, T. (2009). Generation of transgenic non-human primates with germline transmission. Nature, 459(7246), 523–527. https://doi.org/10.1038/nature08090

    Article  CAS  PubMed  Google Scholar 

  • Scarborough, H. S. (1998). Predicting the future achievement of second graders with reading disabilities: Contributions of phonemic awareness, verbal memory, rapid naming, and IQ. Annals of Dyslexia, 48(1), 115–136. https://doi.org/10.1007/s11881-998-0006-5

    Article  Google Scholar 

  • Scerri, T. S., Morris, A. P., Buckingham, L. L., Newbury, D. F., Miller, L. L., Monaco, A. P., … Paracchini, S. (2011). DCDC2, KIAA0319 and CMIP are associated with reading-related traits. Biological Psychiatry, 70(3), 237–245.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scerri, T., & Schulte-Körne, G. (2010). Genetics of developmental dyslexia. European Child & Adolescent Psychiatry. https://doi.org/10.1007/s00787-009-0081-0

  • Schulte-Körne, G., Deimel, W., Bartling, J., & Remschmidt, H. (2001). Speech perception deficit in dyslexic adults as measured by mismatch negativity (MMN). International Journal of Psychophysiology, 40(1), 77–87.

    PubMed  Google Scholar 

  • Serrano, F., & Defior, S. (2008). Dyslexia speed problems in a transparent orthography. Annals of Dyslexia, 58(1), 81.

    PubMed  Google Scholar 

  • Shetake, J. A., Wolf, J. T., Cheung, R. J., Engineer, C. T., Ram, S. K., & Kilgard, M. P. (2011). Cortical activity patterns predict robust speech discrimination ability in noise. European Journal of Neuroscience, 34(11), 1823–1838.

    Google Scholar 

  • Swan, D., & Goswami, U. (1997). Phonological awareness deficits in developmental dyslexia and the phonological representations hypothesis. Journal of Experimental Child Psychology, 66(1), 18–41.

    CAS  PubMed  Google Scholar 

  • Szalkowski, C. E., Fiondella, C. F., Truong, D. T., Rosen, G. D., LoTurco, J. J., & Fitch, R. H. (2012). The effects of Kiaa0319 knockdown on cortical and subcortical anatomy in male rats. International Journal of Developmental Neuroscience, 31(2), 116–122.

    PubMed  PubMed Central  Google Scholar 

  • Szalkowski, C. E., Fiondella, C. G., Galaburda, A. M., Rosen, G. D., LoTurco, J. J., & Fitch, R. H. (2012). Neocortical disruption and behavioral impairments in rats following in utero RNAi of candidate dyslexia risk gene Kiaa0319. International Journal of Developmental Neuroscience, 30(4), 293–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Temple, E., Deutsch, G. K., Poldrack, R. A., Miller, S. L., Tallal, P., Merzenich, M. M., & Gabrieli, J. D. E. (2003). Neural deficits in children with dyslexia ameliorated by behavioral remediation: Evidence from functional MRI. Proceedings of the National Academy of Sciences, 100(5), 2860.

    CAS  Google Scholar 

  • Threlkeld, S. W., McClure, M. M., Bai, J., Wang, Y., LoTurco, J. J., Rosen, G. D., & Fitch, R. H. (2007). Developmental disruptions and behavioral impairments in rats following in utero RNAi of Dyx1c1. Brain Research Bulletin, 71(5), 508–514.

    CAS  PubMed  Google Scholar 

  • Truong, D. T., Che, A., Rendall, A. R., Szalkowski, C. E., LoTurco, J. J., Galaburda, A. M., & Holly Fitch, R. (2014). Mutation of Dcdc2 in mice leads to impairments in auditory processing and memory ability. Genes, Brain, and Behavior, 13(8), 802–811. https://doi.org/10.1111/gbb.12170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsui, D., Vessey, J. P., Tomita, H., Kaplan, D. R., & Miller, F. D. (2013). FoxP2 regulates neurogenesis during embryonic cortical development. Journal of Neuroscience, 33(1), 244–258. https://doi.org/10.1523/JNEUROSCI.1665-12.2013

  • Vernes, S. C., Newbury, D. F., Abrahams, B. S., Winchester, L., Nicod, J., Groszer, M., … Fisher, S. E. (Eds.). (2008). A functional genetic link between distinct developmental language disorders. The New England Journal of Medicine, 359(22), 2337–2345. https://doi.org/10.1056/NEJMoa0802828

  • Wagner, R., Torgesen, J., & Pearson, N. (2013). Comprehensive test of phonological processing (2nd ed.). Austin, TX: Pro-Ed.

    Google Scholar 

  • Wang, Y., Yin, X., Rosen, G., Gabel, L., Guadiana, S. M., Sarkisian, M. R., … LoTurco, J. J. (2011). Dcdc2 knockout mice display exacerbated developmental disruptions following knockdown of Dcx. Neuroscience, 190, 398–408.

    CAS  PubMed  Google Scholar 

  • Whalley, H. C., O’Connell, G., Sussmann, J. E., Peel, A., Stanfield, A. C., Hayiou-Thomas, M. E., … Hall, J. (2011). Genetic variation in CNTNAP2 alters brain function during linguistic processing in healthy individuals. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 156(8), 941–948. https://doi.org/10.1002/ajmg.b.31241

    Article  CAS  Google Scholar 

  • Wilcke, A., Ligges, C., Burkhardt, J., Alexander, M., Wolf, C., Quente, E., … Kirsten, H. (2012). Imaging genetics of FOXP2 in dyslexia. European Journal of Human Genetics, 20(2), 224–229. https://doi.org/10.1038/ejhg.2011.160

    Article  CAS  PubMed  Google Scholar 

  • Wolf, M., Barzillai, M., Gottwald, S., Miller, L., Spencer, K., Norton, E., … Morris, R. (2009). The RAVE-O intervention: Connecting neuroscience to the classroom. Mind, Brain, and Education, 3(2), 84–93. https://doi.org/10.1111/j.1751-228X.2009.01058.x

    Article  Google Scholar 

  • Wolf, M., & Bowers, P. (1999). The double-deficit hypothesis for the developmental dyslexias. Journal of Educational Psychology, 91(3), 415.

    Google Scholar 

  • Wolf, M., Miller, L., & Donnelly, K. (2000). Retrieval, automaticity, vocabulary elaboration, orthography (RAVE-O). Journal of Learning Disabilities, 33(4), 375–386. https://doi.org/10.1177/002221940003300408

    Article  CAS  PubMed  Google Scholar 

  • Ypsilanti, A., Zagar, Y., & Chedotal, C. (2010). Moving away from the midline: New developments for Slit and Robo. Development, 137(12), 1939–1952.

    CAS  PubMed  Google Scholar 

  • Žarić, G., Fraga González, G., Tijms, J., van der Molen, M. W., Blomert, L., & Bonte, M. (2014). Reduced neural integration of letters and speech sounds in dyslexic children scales with individual differences in reading fluency. PLOS ONE, 9(10), e110337. https://doi.org/10.1371/journal.pone.0110337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Li, J., Song, S., Tardif, T., Burmeister, M., Villafuerte, S. M., … Shu, H. (2016). Association of DCDC2 polymorphisms with normal variations in reading abilities in a Chinese population. PLOS ONE, 11(4), e0153603. https://doi.org/10.1371/journal.pone.0153603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziegler, J. C., Bertrand, D., Tóth, D., Csépe, V., Reis, A., Faísca, L., … Blomert, L. (2010). Orthographic depth and its impact on universal predictors of reading. Psychological Science, 21(4), 551–559. https://doi.org/10.1177/0956797610363406

    Article  PubMed  Google Scholar 

  • Ziegler, J. C., Pech-Georgel, C., George, F., & Lorenzi, C. (2009). Speech-perception-in-noise deficits in dyslexia. Developmental Science, 12(5), 732–745.

    PubMed  Google Scholar 

  • Zou, L., Chen, W., Shao, S., Sun, Z., Zhong, R., Shi, J., … Song, R. (2012). Genetic variant in KIAA0319, but not in DYX1C1, is associated with risk of dyslexia: An integrated meta-analysis. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 159(8), 970–976.

    CAS  Google Scholar 

  • Zoubrinetzky, R., Bielle, F., & Valdois, S. (2014). New insights on developmental dyslexia subtypes: Heterogeneity of mixed reading profiles. PLOS ONE, 9(6), e99337. https://doi.org/10.1371/journal.pone.0099337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Centanni, T.M. (2020). Neural and Genetic Mechanisms of Dyslexia. In: Argyropoulos, G.P.D. (eds) Translational Neuroscience of Speech and Language Disorders. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-030-35687-3_4

Download citation

Publish with us

Policies and ethics