Skip to main content

Computational Models for Cumulative Prospect Theory: Application to the Knapsack Problem Under Risk

  • Conference paper
  • First Online:
Scalable Uncertainty Management (SUM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11940))

Included in the following conference series:

  • 629 Accesses

Abstract

Cumulative Prospect Theory (CPT) is a well known model introduced by Kahneman and Tversky in the context of decision making under risk to overcome some descriptive limitations of Expected Utility. In particular CPT makes it possible to account for the framing effect (outcomes are assessed positively or negatively relatively to a reference point) and the fact that people often exhibit different risk attitudes towards gains and losses. We study here computational aspects related to the implementation of CPT for decision making in combinatorial domains. More precisely, we consider the Knapsack Problem under Risk that consists of selecting the “best” subset of alternatives (investments, projects, candidates) subject to a budget constraint. The alternatives’ outcomes may be positive or negative (gains or losses) and are uncertain due to the existence of several possible scenarios of known probability. Preferences over admissible subsets are based on the CPT model and we want to determine the CPT-optimal subset for a risk-averse Decision Maker (DM). The problem requires to optimize a non-linear function over a combinatorial domain. In the paper we introduce two distinct computational models based on mixed-integer linear programming to solve the problem. These models are implemented and tested on randomly generated instances of different sizes to show the practical efficiency of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chateauneuf, A.: On the use of capacities in modeling uncertainty aversion and risk aversion. J. Math. Econ. 20(4), 343–369 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Grabisch, M., Marichal, J.L., Mesiar, R., Pap, E.: Aggregation Functions, vol. 127. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  3. He, X.D., Zhou, X.Y.: Portfolio choice under cumulative prospect theory: an analytical treatment. Manag. Sci. 57(2), 315–331 (2011)

    Article  MATH  Google Scholar 

  4. Hines, G., Larson, K.: Preference elicitation for risky prospects. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems: volume 1, vol. 1, pp. 889–896. International Foundation for Autonomous Agents and Multiagent Systems (2010)

    Google Scholar 

  5. Jaffray, J., Nielsen, T.: An operational approach to rational decision making based on rank dependent utility. Eur. J. Oper. Res. 169(1), 226–246 (2006)

    Article  MATH  Google Scholar 

  6. Jeantet, G., Spanjaard, O.: Computing rank dependent utility in graphical models for sequential decision problems. Artif. Intell. 175(7–8), 1366–1389 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kahneman, D., Tversky, A.: Prospect theory: an analysis of decision under risk. Econometrica 47(2), 263–292 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  8. Labreuche, C., Grabisch, M.: Generalized choquet-like aggregation functions for handling bipolar scales. Eur. J. Oper. Res. 172(3), 931–955 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Li, X., Wang, W., Xu, C., Li, Z., Wang, B.: Multi-objective optimization of urban bus network using cumulative prospect theory. J. Syst. Sci. Complex. 28(3), 661–678 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mansini, R., Ogryczak, W., Speranza, M.G.: Twenty years of linear programming based portfolio optimization. Eur. J. Oper. Res. 234(2), 518–535 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mansini, R., Ogryczak, W., Speranza, M.G.: Linear and Mixed Integer Programming for Portfolio Optimization. EATOR. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18482-1

    Book  MATH  Google Scholar 

  12. Martin, H., Perny, P.: Biowa for preference aggregation with bipolar scales: application to fair optimization in combinatorial domains. In: IJCAI (2019)

    Google Scholar 

  13. Ogryczak, W., Śliwiński, T.: On efficient wowa optimization for decision support under risk. Int. J. Approximate Reasoning 50(6), 915–928 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Perny, P., Spanjaard, O., Storme, L.X.: State space search for risk-averse agents. In: IJCAI, pp. 2353–2358 (2007)

    Google Scholar 

  15. Perny, P., Viappiani, P., Boukhatem, A.: Incremental preference elicitation for decision making under risk with the rank-dependent utility model. In: Proceedings of Uncertainty in Artificial Intelligence (2016)

    Google Scholar 

  16. Prashanth, L., Jie, C., Fu, M., Marcus, S., Szepesvári, C.: Cumulative prospect theory meets reinforcement learning: prediction and control. In: International Conference on Machine Learning, pp. 1406–1415 (2016)

    Google Scholar 

  17. Quiggin, J.: Generalized Expected Utility Theory - The Rank-dependent Model. Kluwer Academic Publisher, Dordrecht (1993)

    Book  MATH  Google Scholar 

  18. Rothschild, M., Stiglitz, J.E.: Increasing risk: I. A definition. J. Econ. Theory 2(3), 225–243 (1970)

    Article  MathSciNet  Google Scholar 

  19. Savage, L.J.: The Foundations of Statistics. J. Wiley and Sons, New-York (1954)

    MATH  Google Scholar 

  20. Schmeidler, D.: Integral representation without additivity. Proc. Am. Math. Soc. 97(2), 255–261 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schmidt, U., Zank, H.: Risk aversion in cumulative prospect theory. Manag. Sci. 54(1), 208–216 (2008)

    Article  Google Scholar 

  22. Shapley, L.: Cores of convex games. Int. J. Game Theory 1, 11–22 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tversky, A., Kahneman, D.: Advances in prospect theory: cumulative representation of uncertainty. J. Risk Uncertainty 5(4), 297–323 (1992)

    Article  MATH  Google Scholar 

  24. Von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior, 2nd edn. Princeton University Press, Princeton (1947)

    MATH  Google Scholar 

  25. Yaari, M.: The dual theory of choice under risk. Econometrica 55, 95–115 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrice Perny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martin, H., Perny, P. (2019). Computational Models for Cumulative Prospect Theory: Application to the Knapsack Problem Under Risk. In: Ben Amor, N., Quost, B., Theobald, M. (eds) Scalable Uncertainty Management. SUM 2019. Lecture Notes in Computer Science(), vol 11940. Springer, Cham. https://doi.org/10.1007/978-3-030-35514-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35514-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35513-5

  • Online ISBN: 978-3-030-35514-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics