Skip to main content

Lactate and Lactate Transporters as Key Players in the Maintenance of the Warburg Effect

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1219))

Abstract

Reprogramming of energy metabolism is a key hallmark of cancer. Most cancer cells display a glycolytic phenotype, with increased glucose consumption and glycolysis rates, and production of lactate as the end product, independently of oxygen concentrations. This phenomenon, known as “Warburg Effect”, provides several survival advantages to cancer cells and modulates the metabolism and function of neighbour cells in the tumour microenvironment. However, due to the presence of metabolic heterogeneity within a tumour, cancer cells can also display an oxidative phenotype, and corruptible cells from the microenvironment become glycolytic, cooperating with oxidative cancer cells to boost tumour growth. This phenomenon is known as “Reverse Warburg Effect”. In either way, lactate is a key mediator in the metabolic crosstalk between cancer cells and the microenvironment, and lactate transporters are expressed differentially by existing cell populations, to support this crosstalk.

In this review, we will focus on lactate and on lactate transporters in distinct cells of the tumour microenvironment, aiming at a better understanding of their role in the acquisition and maintenance of the direct/reverse “Warburg effect” phenotype, which modulate cancer progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Download references

Acknowledgments

This article has been developed under the scope of the project NORTE-01-0145-FEDER- 000013, supported by the Northern Portugal Regional Operational Programme (NORTE 2020) under the Portugal Partnership Agreement, through the European Regional Development Fund (FEDER), and through the Competitiveness Factors Operational Programme (COMPETE) and by National funds, through the Foundation for Science and Technology (FCT), under the scope of the project POCI-01-0145-FEDER-007038. AP, JA and SG received fellowships from FCT, ref. SFRH/BD/148476/2019, SFRH/BPD/116784/2016 and SFRH/BPD/117858/2016, respectively.

Competing Interests

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fátima Baltazar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pereira-Nunes, A., Afonso, J., Granja, S., Baltazar, F. (2020). Lactate and Lactate Transporters as Key Players in the Maintenance of the Warburg Effect. In: Serpa, J. (eds) Tumor Microenvironment . Advances in Experimental Medicine and Biology, vol 1219. Springer, Cham. https://doi.org/10.1007/978-3-030-34025-4_3

Download citation

Publish with us

Policies and ethics