Skip to main content

Integrating Cross-modality Hallucinated MRI with CT to Aid Mediastinal Lung Tumor Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 (MICCAI 2019)

Abstract

Lung tumors, especially those located close to or surrounded by soft tissues like the mediastinum, are difficult to segment due to the low soft tissue contrast on computed tomography images. Magnetic resonance images contain superior soft-tissue contrast information that can be leveraged if both modalities were available for training. Therefore, we developed a cross-modality educed learning approach where MR information that is educed from CT is used to hallucinate MRI and improve CT segmentation. Our approach, called cross-modality educed deep learning segmentation (CMEDL) combines CT and pseudo MR produced from CT by aligning their features to obtain segmentation on CT. Features computed in the last two layers of parallelly trained CT and MR segmentation networks are aligned. We implemented this approach on U-net and dense fully convolutional networks (dense-FCN). Our networks were trained on unrelated cohorts from open-source the Cancer Imaging Archive CT images (N = 377), an internal archive T2-weighted MR (N = 81), and evaluated using separate validation (N = 304) and testing (N = 333) CT-delineated tumors. Our approach using both networks were significantly more accurate (U-net \(P <0.001\); denseFCN \(P <0.001\)) than CT-only networks and achieved an accuracy (Dice similarity coefficient) of \(0.71\pm 0.15\) (U-net), \(0.74\pm 0.12\) (denseFCN) on validation and \(0.72\pm 0.14\) (U-net), \(0.73\pm 0.12\) (denseFCN) on the testing sets. Our novel approach demonstrated that educing cross-modality information through learned priors enhances CT segmentation performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Njeh, C.: Tumor delineation: the weakest link in the search for accuracy in radiotherapy. J. Med. Phys./Assoc. Med. Phys. India 33(4), 136 (2008)

    Google Scholar 

  2. Devic, S.: MRI simulation for radiotherapy treatment planning. Med. Phys. 39(11), 6701–6711 (2012)

    Article  Google Scholar 

  3. Nie, D., et al.: Medical image synthesis with context-aware generative adversarial networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 417–425. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_48

    Chapter  Google Scholar 

  4. Chartsias, A., Joyce, T., Dharmakumar, R., Tsaftaris, S.A.: Adversarial image synthesis for unpaired multi-modal cardiac data. In: Tsaftaris, S.A., Gooya, A., Frangi, A.F., Prince, J.L. (eds.) SASHIMI 2017. LNCS, vol. 10557, pp. 3–13. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68127-6_1

    Chapter  Google Scholar 

  5. Jiang, J., et al.: Tumor-aware, adversarial domain adaptation from CT to MRI for lung cancer segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 777–785. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_86

    Chapter  Google Scholar 

  6. Zhu, J.Y., Park, T., Isola, P., Efros, A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: International Conference Computer Vision (ICCV), pp. 2223–2232 (2017)

    Google Scholar 

  7. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Deep transfer learning with joint adaptation networks. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 2208–2217. JMLR. org (2017)

    Google Scholar 

  8. Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

    Article  Google Scholar 

  9. Vanya, V.V., et al.: Multi-modal learning from unpaired images: application to multi-organ segmentation in CT and MRI. In: 2018 IEEE Winter Conference on Applications of Computer Vision, WACV 2018, Lake Tahoe, NV, USA, 12–15 March 2018, pp. 547–556 (2018)

    Google Scholar 

  10. Cai, J., Zhang, Z., Cui, L., Zheng, Y., Yang, L.: Towards cross-modal organ translation and segmentation: a cycle-and shape-consistent generative adversarial network. Med. Image Anal. 52, 174–184 (2019)

    Article  Google Scholar 

  11. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems (NIPS), pp. 2672–2680 (2014)

    Google Scholar 

  12. Mechrez, R., Talmi, I., Zelnik-Manor, L.: The contextual loss for image transformation with non-aligned data. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 800–815. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_47

    Chapter  Google Scholar 

  13. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  14. Jégou, S., Drozdzal, M., Vazquez, D., Romero, A., Bengio, Y.: The one hundred layers tiramisu: fully convolutional densenets for semantic segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1175–1183. IEEE (2017)

    Google Scholar 

  15. Paszke, A., et al.: Automatic differentiation in pytorch (2017)

    Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the 3rd International Conference on Learning Representations (ICLR) (2014)

    Google Scholar 

  17. Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013)

    Article  Google Scholar 

  18. Aerts, H.J., et al.: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5, 4006 (2014)

    Article  Google Scholar 

  19. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the MSK Cancer Center support grant/core grant P30 CA008748, and NCI R01 CA198121-03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veeraraghavan Harini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jue, J. et al. (2019). Integrating Cross-modality Hallucinated MRI with CT to Aid Mediastinal Lung Tumor Segmentation. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11769. Springer, Cham. https://doi.org/10.1007/978-3-030-32226-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32226-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32225-0

  • Online ISBN: 978-3-030-32226-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics