Skip to main content

Adversarial Image Synthesis for Unpaired Multi-modal Cardiac Data

  • Conference paper
  • First Online:
Simulation and Synthesis in Medical Imaging (SASHIMI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10557))

Included in the following conference series:

Abstract

This paper demonstrates the potential for synthesis of medical images in one modality (e.g. MR) from images in another (e.g. CT) using a CycleGAN [24] architecture. The synthesis can be learned from unpaired images, and applied directly to expand the quantity of available training data for a given task. We demonstrate the application of this approach in synthesising cardiac MR images from CT images, using a dataset of MR and CT images coming from different patients. Since there can be no direct evaluation of the synthetic images, as no ground truth images exist, we demonstrate their utility by leveraging our synthetic data to achieve improved results in segmentation. Specifically, we show that training on both real and synthetic data increases accuracy by 15% compared to real data. Additionally, our synthetic data is of sufficient quality to be used alone to train a segmentation neural network, that achieves 95% of the accuracy of the same model trained on real data.

A. Chartsias and T. Joyce—Contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://keras.io.

References

  1. Alessandrini, M., De Craene, M., Bernard, O., Giffard-Roisin, S., Allain, P., Waechter-Stehle, I., Weese, J., Saloux, E., Delingette, H., Sermesant, M.: A pipeline for the generation of realistic 3D synthetic echocardiographic sequences: methodology and open-access database. IEEE TMI 34(7), 1436–1451 (2015)

    Google Scholar 

  2. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein gan. preprint arXiv:1701.07875 (2017)

  3. Berthelot, D., Schumm, T., Metz, L.: BEGAN: Boundary Equilibrium Generative Adversarial Networks. preprint arXiv:1703.10717 (2017)

  4. Cordier, N., Delingette, H., Lê, M., Ayache, N.: Extended modality propagation: image synthesis of pathological cases. IEEE TMI 35(12), 2598–2608 (2016)

    Google Scholar 

  5. Duchateau, N., Sermesant, M., Delingette, H., Ayache, N.: Model-based generation of large databases of cardiac images: synthesis of pathological cine MR sequences from real healthy cases. IEEE TMI (99) (2017). doi:10.1109/TMI.2017.2714343

  6. Goodfellow, I., et al.: Generative adversarial nets. In: NIPS, pp. 2672–2680 (2014)

    Google Scholar 

  7. Huang, Y., Beltrachini, L., Shao, L., Frangi, A.F.: Geometry regularized joint dictionary learning for cross-modality image synthesis in magnetic resonance imaging. In: Tsaftaris, S.A., Gooya, A., Frangi, A.F., Prince, J.L. (eds.) SASHIMI 2016. LNCS, vol. 9968, pp. 118–126. Springer, Cham (2016). doi:10.1007/978-3-319-46630-9_12

    Chapter  Google Scholar 

  8. Huang, Y., Shao, L., Frangi, A.F.: Simultaneous super-resolution and cross-modality synthesis of 3D medical images using weakly-supervised joint convolutional sparse coding. preprint arXiv:1705.02596 (2017)

  9. Iglesias, J.E., Konukoglu, E., Zikic, D., Glocker, B., Van Leemput, K., Fischl, B.: Is synthesizing MRI contrast useful for inter-modality analysis? In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 631–638. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40811-3_79

    Chapter  Google Scholar 

  10. Jog, A., Carass, A., Roy, S., Pham, D.L., Prince, J.L.: Random forest regression for magnetic resonance image synthesis. Med. Image Anal. 35, 475–488 (2017)

    Article  Google Scholar 

  11. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. preprint arXiv:1412.6980 (2014)

  12. Oktay, O., et al.: Multi-input cardiac image super-resolution using convolutional neural networks. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 246–254. Springer, Cham (2016). doi:10.1007/978-3-319-46726-9_29

    Chapter  Google Scholar 

  13. Oktay, O., Ferrante, E., Kamnitsas, K., Heinrich, M., Bai, W., Caballero, J., Guerrero, R., Cook, S., de Marvao, A., O’Regan, D.: Anatomically constrained neural networks (ACNN): application to cardiac image enhancement and segmentation. preprint arXiv:1705.08302 (2017)

  14. Prakosa, A., Sermesant, M., Delingette, H., Marchesseau, S., Saloux, E., Allain, P., Villain, N., Ayache, N.: Generation of synthetic but visually realistic time series of cardiac images combining a biophysical model and clinical images. IEEE TMI 32(1), 99–109 (2013)

    Google Scholar 

  15. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. preprint arXiv:1511.06434 (2015)

  16. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). doi:10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  17. Sevetlidis, V., Giuffrida, M.V., Tsaftaris, S.A.: Whole image synthesis using a deep encoder-decoder network. In: Tsaftaris, S.A., Gooya, A., Frangi, A.F., Prince, J.L. (eds.) SASHIMI 2016. LNCS, vol. 9968, pp. 127–137. Springer, Cham (2016). doi:10.1007/978-3-319-46630-9_13

    Chapter  Google Scholar 

  18. Tavakoli, V., Amini, A.A.: A survey of shaped-based registration and segmentation techniques for cardiac images. Comput. Vis. Image Underst. 117(9), 966–989 (2013)

    Article  Google Scholar 

  19. Tran, P.V.: A fully convolutional neural network for cardiac segmentation in shortaxis MRI. preprint arXiv:1604.00494 (2016)

  20. van Tulder, G., de Bruijne, M.: Why does synthesized data improve multi-sequence classification? In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 531–538. Springer, Cham (2015). doi:10.1007/978-3-319-24553-9_65

    Chapter  Google Scholar 

  21. Van Nguyen, H., Zhou, K., Vemulapalli, R.: Cross-domain synthesis of medical images using efficient location-sensitive deep network. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 677–684. Springer, Cham (2015). doi:10.1007/978-3-319-24553-9_83

    Chapter  Google Scholar 

  22. Vemulapalli, R., Van Nguyen, H., Kevin Zhou, S.: Unsupervised cross-modal synthesis of subject-specific scans. In: IEEE ICCV, pp. 630–638 (2015)

    Google Scholar 

  23. Zhou, Y., Giffard-Roisin, S., De Craene, M., D’hooge, J., Alessandrini, M., Friboulet, D., Sermesant, M., Bernard, O.: A framework for the generation of realistic synthetic cardiac ultrasound and magnetic resonance imaging sequences from the same virtual patients. IEEE TMI (99) (2017). doi:10.1109/TMI.2017.2708159

  24. Zhu, J.: Unpaired image-to-image translation using cycle-consistent adversarial networks. preprint arXiv:1703.10593 (2017)

  25. Zhuang, X., Rhode, K.S., Razavi, R.S., Hawkes, D.J., Ourselin, S.: A registrationbased propagation framework for automatic whole heart segmentation of cardiac MRI. IEEE TMI 29(9), 1612–1625 (2010)

    Google Scholar 

  26. Zhuang, X., Shen, J.: Multi-scale patch and multi-modality atlases for whole heart segmentation of MRI. Med. Image Anal. 31, 77–87 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the US National Institutes of Health (2R01HL091989-05) and UK EPSRC (EP/P022928/1). We thank NVIDIA for donating a Titan X GPU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agisilaos Chartsias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Chartsias, A., Joyce, T., Dharmakumar, R., Tsaftaris, S.A. (2017). Adversarial Image Synthesis for Unpaired Multi-modal Cardiac Data. In: Tsaftaris, S., Gooya, A., Frangi, A., Prince, J. (eds) Simulation and Synthesis in Medical Imaging. SASHIMI 2017. Lecture Notes in Computer Science(), vol 10557. Springer, Cham. https://doi.org/10.1007/978-3-319-68127-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68127-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68126-9

  • Online ISBN: 978-3-319-68127-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics