Skip to main content

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 39))

Abstract

The clusters of differentiation (CD) are cell-surface receptors involved in cellular functions like activation, adhesion, and inhibition. These ubiquitous receptors express elevated levels of CD on cells which can serve as key marker in several cancers and infectious diseases. We emphasize on CD receptors involved in cancer, infections, and immune response. In particular, we cover the physiology and pathophysiology of the CD receptor and track the latest developments in targeted delivery of therapeutics and diagnostics mediated via CD receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADC:

Antibody-conjugated drug

Anti-EpCAM:

Human epithelial adhesion molecule

BCR:

B-cell receptor

BP:

Binding peptide

Ca2+:

Calcium

CD:

Cluster of differentiation

Ce6:

Chlorine 6

CLL:

Chronic lymphocytic leukemia

CmAbs:

Chemotherapeutic monoclonal antibodies

CMC:

Critical micelle concentration

CR3:

Complement receptor

CS:

Chondroitin sulfate

CTCL:

Cutaneous T-cell lymphoma

CTLs:

Cytotoxic T lymphocytes

DAF:

Decay acceleration factor

DM4:

Maytansine derivative 4

DOX:

Doxorubicin

Fcgr:

Fcgamma receptor

GEM:

Gemcitabine

GO:

Graphene oxide

GP120:

Envelope glycoprotein

GPI:

glycosylphosphatidylinositol

HA:

Hyaluronic acid

HSA:

Human serum albumin

HCCLM3:

Human hepatocellular carcinoma cell line

HCT-116:

Human colorectal carcinoma cell line

HepG2:

Liver hepatocellular carcinoma

HIV-1:

Human immunodeficiency virus type 1

HPMA:

N- (2-hydroxypropyl) methacrylamide

HSV-ttk:

Herpes simplex virus truncated thymidine kinase

IFN-γ:

Interferon gamma

Ig:

Immunoglobin

ITAMs:

Immunoreceptor tyrosine-based activation motifs

Lck:

Lymphocyte-specific protein tyrosine kinase

LNP:

Indinavir-lipid nanoparticles

mAb:

Monoclonal antibody

MDA-MB-231:

M.D. Anderson and MB stands for Metastasis Breast 231

MDR:

Multidrug resistance

MHC:

Major histocompatibility complex

MS4A1:

Membrane Spanning 4-Domains A1

MSNs:

Mesoporous silica nanoparticles

MTX:

Mitoxantrone

NeoR:

Neomycin B-arginine conjugate

NHL:

non-Hodgkin lymphoma

OPN:

Osteopontin

PDAC:

Pancreatic ductal adenocarcinoma

PEG-PLGA:

Polyethylene glycol–poly lactic acid-co-glycolic acid

PEG–PLGA:

Polyethylene glycol–poly lactic acid-co-glycolic acid

PIT:

Photo-induced therapy

pMHC:

Peptide-major histocompatibility complex

PNA:

Peptide nucleic acids

PTKs:

Protein tyrosine kinase

PTX:

Paclitaxel

RFP:

Red fluorescent protein

Rluc:

Renilla luciferase

SCID:

Significant toxicity immunodeficient

SH2:

src homology 2

SLN:

Solid lipid nanoparticle

TCR:

T-cell receptor

TF:

Triple fusion

TFIL:

Tri-functional immunoliposome

Th:

T helper

TNBC:

Triple negative xenograft model of breast cancer

TNF-α:

Tumor necrosis factor alpha

ZAP 70:

Zeta-chain-associated protein kinase

References

  1. Zola H, editor. Medical applications of leukocyte surface molecules—the CD molecules. Molecular medicine. Springer; 2006. New York, USA.

    Google Scholar 

  2. Bernard A, Boumsell L, Dausset J, Milstein C, Schlossman SF. Leucocyte typing: human leucocyte differentiation antigens detected by monoclonal antibodies. Specification-classification-nomenclature/Typage leucocytaire Antigenes de differenciation leucocytaire humains reveles par lesanticorps monoclonaux: Rapports des etudes com. Springer Science & Business Media; 2013.

    Google Scholar 

  3. Erber WN. Human leucocyte differentiation antigens: review of the CD nomenclature. Pathology. 1990;22(2):61–9.

    Article  CAS  PubMed  Google Scholar 

  4. Zola H, Swart B, Nicholson I, Aasted B, Bensussan A, Boumsell L, et al. CD molecules 2005: human cell differentiation molecules. Blood. 2005;106(9):3123–6.

    Article  CAS  PubMed  Google Scholar 

  5. Zola H, Swart B, Banham A, Barry S, Beare A, Bensussan A, et al. CD molecules 2006—human cell differentiation molecules. J Immunol Methods. 2007;319(1–2):1–5.

    Article  CAS  PubMed  Google Scholar 

  6. Prchal J, Levi MM. Williams hematology. New York: The McGraw-Hill Companies; 2010.

    Google Scholar 

  7. Chetty R, Gatter K. CD3: structure, function, and role of immunostaining in clinical practice. J Pathol. 1994;173(4):303–7.

    Article  CAS  PubMed  Google Scholar 

  8. Alarcon B, Berkhout B, Breitmeyer J, Terhorst C. Assembly of the human T cell receptor-CD3 complex takes place in the endoplasmic reticulum and involves intermediary complexes between the CD3-gamma. delta. epsilon core and single T cell receptor alpha or beta chains. J Biol Chem. 1988;263(6):2953–61.

    CAS  PubMed  Google Scholar 

  9. Clevers H, Alarcon B, Wileman T, Terhorst C. The T cell receptor/CD3 complex: a dynamic protein ensemble. Annu Rev Immunol. 1988;6(1):629–62.

    Article  CAS  PubMed  Google Scholar 

  10. Garcia KC, Adams JJ, Feng D, Ely LK. The molecular basis of TCR germline bias for MHC is surprisingly simple. Nat Immunol. 2009;10(2):143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Godfrey DI, Rossjohn J, McCluskey J. The fidelity, occasional promiscuity, and versatility of T cell receptor recognition. Immunity. 2008;28(3):304–14.

    Article  CAS  PubMed  Google Scholar 

  12. Krangel MS. Mechanics of T cell receptor gene rearrangement. Curr Opin Immunol. 2009;21(2):133–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Marrack P, Scott-Browne JP, Dai S, Gapin L, Kappler JW. Evolutionarily conserved amino acids that control TCR-MHC interaction. Annu Rev Immunol. 2008;26:171–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Morris GP, Allen PM. How the TCR balances sensitivity and specificity for the recognition of self and pathogens. Nat Immunol. 2012;13(2):121.

    Article  CAS  PubMed  Google Scholar 

  15. Van Der Merwe PA, Dushek O. Mechanisms for T cell receptor triggering. Nat Rev Immunol. 2011;11(1):47.

    Article  PubMed  CAS  Google Scholar 

  16. Littman DR. The structure of the CD4 and CD8 genes. Annu Rev Immunol. 1987;5(1):561–84.

    Article  CAS  PubMed  Google Scholar 

  17. Ellmeier W, Sawada S, Littman DR. The regulation of CD4 and CD8 coreceptor gene expression during T cell development. Annu Rev Immunol. 1999;17(1):523–54.

    Article  CAS  PubMed  Google Scholar 

  18. Rudd CE. CD4, CD8 and the TCR-CD3 complex: a novel class of protein-tyrosine kinase receptor. Immunol Today. 1990;11:400–6.

    Article  CAS  PubMed  Google Scholar 

  19. Zhou L-J, Ord DC, Hughes AL, Tedder TF. Structure and domain organization of the CD19 antigen of human, mouse, and guinea pig B lymphocytes. Conservation of the extensive cytoplasmic domain. J Immunol. 1991;147(4):1424–32.

    CAS  PubMed  Google Scholar 

  20. Pitcher LA, Van Oers NS. T-cell receptor signal transmission: who gives an ITAM? Trends Immunol. 2003;24(10):554–60.

    Article  CAS  PubMed  Google Scholar 

  21. Smith-Garvin JE, Koretzky GA, Jordan MS. T cell activation. Annu Rev Immunol. 2009;27:591–619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cartron G, Watier H, Golay J, Solal-Celigny P. From the bench to the bedside: ways to improve rituximab efficacy. Blood. 2004;104(9):2635–42.

    Article  CAS  PubMed  Google Scholar 

  23. Louderbough JM, Schroeder JA. Understanding the dual nature of CD44 in breast cancer progression. Mol Cancer Res. 2011;9(12):1573–86.

    Article  CAS  PubMed  Google Scholar 

  24. Louderbough JM, Brown JA, Nagle RB, Schroeder JA. CD44 promotes epithelial mammary gland development and exhibits altered localization during cancer progression. Genes Cancer. 2011;2(8):771–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Misra S, Heldin P, Hascall VC, Karamanos NK, Skandalis SS, Markwald RR, et al. Hyaluronan–CD44 interactions as potential targets for cancer therapy. FEBS J. 2011;278(9):1429–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Naor D, Sionov RV, Ish-Shalom D. CD44: structure, function and association with the malignant process. Adv Cancer Res. 1997;71:241–319; Elsevier.

    Article  CAS  PubMed  Google Scholar 

  27. Sneath R, Mangham D. The normal structure and function of CD44 and its role in neoplasia. Mol Pathol. 1998;51(4):191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bychkov A, Jung CK. Aberrant expression of CD20 in thyroid cancer and its clinicopathologic significance. Hum Pathol. 2018;71:74–83.

    Article  CAS  PubMed  Google Scholar 

  29. Khatri I, Ganguly K, Sharma S, Carmicheal J, Kaur S, Batra SK, et al. Systems biology approach to identify novel genomic determinants for pancreatic cancer pathogenesis. Sci Rep. 2019;9(1):123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Fedorchenko O, Stiefelhagen M, Peer-Zada AA, Barthel R, Mayer P, Eckei L, et al. CD44 regulates the apoptotic response and promotes disease development in chronic lymphocytic leukemia. Blood. 2013;121(20):4126–36.

    Article  CAS  PubMed  Google Scholar 

  31. Chen C, Zhao S, Karnad A, Freeman JW. The biology and role of CD44 in cancer progression: therapeutic implications. J Hematol Oncol. 2018;11(1):64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Katsetos CD, Fincke JE, Legido A, Lischner HW, de Chadarevian J-P, Kaye EM, et al. Angiocentric CD3+ T-cell infiltrates in human immunodeficiency virus type 1-associated central nervous system disease in children. Clin Diagn Lab Immunol. 1999;6(1):105–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Vidya Vijayan K, Karthigeyan KP, Tripathi SP, Hanna LE. Pathophysiology of CD4+ T-cell depletion in HIV-1 and HIV-2 infections. Front Immunol. 2017;8:580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pahwa S, Read JS, Yin W, Matthews Y, Shearer W, Diaz C, et al. CD4/CD8 ratio for diagnosis of HIV-1 infection in infants: the Women and Infants Transmission Study. Pediatrics. 2008;122(2):331.

    Article  PubMed  Google Scholar 

  35. Flynn JL, Goldstein MM, Triebold KJ, Koller B, Bloom BR. Major histocompatibility complex class I-restricted T cells are required for resistance to Mycobacterium tuberculosis infection. Proc Natl Acad Sci. 1992;89(24):12013–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tascon RE, Stavropoulos E, Lukacs KV, Colston MJ. Protection against Mycobacterium tuberculosis infection by CD8+ T cells requires the production of gamma interferon. Infect Immun. 1998;66(2):830–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Stenger S, Modlin RL. T cell mediated immunity to Mycobacterium tuberculosis. Curr Opin Microbiol. 1999;2(1):89–93.

    Article  CAS  PubMed  Google Scholar 

  38. Prezzemolo T, Guggino G, La Manna MP, Di Liberto D, Dieli F, Caccamo N. Functional signatures of human CD4 and CD8 T cell responses to Mycobacterium tuberculosis. Front Immunol. 2014;5:180.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Bolt S, Routledge E, Lloyd I, Chatenoud L, Pope H, Gorman SD, et al. The generation of a humanized, non-mitogenic CD3 monoclonal antibody which retains in vitro immunosuppressive properties. Eur J Immunol. 1993;23(2):403–11.

    Article  CAS  PubMed  Google Scholar 

  40. Carpenter PA, Appelbaum FR, Corey L, Deeg HJ, Doney K, Gooley T, et al. A humanized non–FcR-binding anti-CD3 antibody, visilizumab, for treatment of steroid-refractory acute graft-versus-host disease. Blood. 2002;99(8):2712–9.

    Article  CAS  PubMed  Google Scholar 

  41. Bruno CJ, Jacobson JM. Ibalizumab: an anti-CD4 monoclonal antibody for the treatment of HIV-1 infection. J Antimicrob Chemother. 2010;65(9):1839–41.

    Article  CAS  PubMed  Google Scholar 

  42. Kuritzkes DR, Jacobson J, Powderly WG, Godofsky E, DeJesus E, Haas F, et al. Antiretroviral activity of the anti-CD4 monoclonal antibody TNX-355 in patients infected with HIV type 1. J Infect Dis. 2004;189(2):286–91.

    Article  CAS  PubMed  Google Scholar 

  43. Rider DA, Havenith CE, de Ridder R, Schuurman J, Favre C, Cooper JC, et al. A human CD4 monoclonal antibody for the treatment of T-cell lymphoma combines inhibition of T-cell signaling by a dual mechanism with potent Fc-dependent effector activity. Cancer Res. 2007;67(20):9945–53.

    Article  CAS  PubMed  Google Scholar 

  44. Reusch U, Duell J, Ellwanger K, Herbrecht C, Knackmuss SH, Fucek I, et al., editors. A tetravalent bispecific TandAb (CD19/CD3), AFM11, efficiently recruits T cells for the potent lysis of CD19+ tumor cells. MAbs; 2015: Taylor & Francis. Oxfordshire United Kingdom

    Google Scholar 

  45. Breton CS, Nahimana A, Aubry D, Macoin J, Moretti P, Bertschinger M, et al. A novel anti-CD19 monoclonal antibody (GBR 401) with high killing activity against B cell malignancies. J Hematol Oncol. 2014;7(1):33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Blanc V, Bousseau A, Caron A, Carrez C, Lutz RJ, Lambert JM. SAR3419: an anti-CD19-Maytansinoid immunoconjugate for the treatment of B-cell malignancies. Clin Cancer Res. 2011;17(20):6448–58.

    Article  CAS  PubMed  Google Scholar 

  47. Sun X, Widdison W, Mayo M, Wilhelm S, Leece B, Chari R, et al. Design of antibody− maytansinoid conjugates allows for efficient detoxification via liver metabolism. Bioconjug Chem. 2011;22(4):728–35.

    Article  CAS  PubMed  Google Scholar 

  48. Kiprijanov SM. Bispecific antibodies and immune therapy targeting. Drug Deliv Oncol. 2012:441–82.

    Google Scholar 

  49. Lin TS. Ofatumumab: a novel monoclonal anti-CD20 antibody. Pharmgenomics Pers Med. 2010;3:51.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Mott PJ, Lazarus AH. CD44 antibodies and immune thrombocytopenia in the amelioration of murine inflammatory arthritis. PLoS One. 2013;8(6):e65805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rao G, Wang H, Li B, Huang L, Xue D, Wang X, et al. Reciprocal interactions between tumor-associated macrophages and CD44-positive cancer cells via osteopontin/CD44 promote tumorigenicity in colorectal cancer. Clin Cancer Res. 2013;19(4):785–97.

    Article  CAS  PubMed  Google Scholar 

  52. Pietras A, Katz AM, Ekström EJ, Wee B, Halliday JJ, Pitter KL, et al. Osteopontin-CD44 signaling in the glioma perivascular niche enhances cancer stem cell phenotypes and promotes aggressive tumor growth. Cell Stem Cell. 2014;14(3):357–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ferro M, Giuberti G, Zappavigna S, Perdonà S, Facchini G, Sperlongano P, et al. Chondroitin sulphate enhances the antitumor activity of gemcitabine and mitomycin-C in bladder cancer cells with different mechanisms. Oncol Rep. 2012;27(2):409–15.

    CAS  PubMed  Google Scholar 

  54. Liu Y-S, Chiu C-C, Chen H-Y, Chen S-H, Wang L-F. Preparation of chondroitin sulfate-g-poly (ε-caprolactone) copolymers as a CD44-targeted vehicle for enhanced intracellular uptake. Mol Pharm. 2014;11(4):1164–75.

    Article  CAS  PubMed  Google Scholar 

  55. Schmid D, Park CG, Hartl CA, Subedi N, Cartwright AN, Puerto RB, et al. T cell-targeting nanoparticles focus delivery of immunotherapy to improve antitumor immunity. Nat Commun. 2017;8(1):1747.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Chalouni C, Doll S. Fate of antibody-drug conjugates in cancer cells. J Exp Clin Cancer Res. 2018;37(1):20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Hellmann I, Waldmeier L, Bannwarth-Escher M-C, Maslova K, Wolter FI, Grawunder U, et al. Novel antibody drug conjugates targeting tumor-associated receptor tyrosine kinase ROR2 by functional screening of fully human antibody libraries using Transpo-mAb display on progenitor B cells. Front Immunol. 2018;9:2490.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Kalim M, Chen J, Wang S, Lin C, Ullah S, Liang K, et al. Intracellular trafficking of new anticancer therapeutics: antibody–drug conjugates. Drug Des Devel Ther. 2017;11:2265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Niculescu-Duvaz I, Springer C. Antibody-directed enzyme prodrug therapy (ADEPT): a review. Adv Drug Deliv Rev. 1997;26(2–3):151–72.

    Article  CAS  PubMed  Google Scholar 

  60. Xu G, McLeod HL. Strategies for enzyme/prodrug cancer therapy. Clin Cancer Res. 2001;7(11):3314–24.

    CAS  PubMed  Google Scholar 

  61. Bagshawe KD. Antibody-directed enzyme prodrug therapy. In: Prodrugs: Springer; 2007. p. 525–40. New York, USA

    Google Scholar 

  62. Hammer O, editor. CD19 as an attractive target for antibody-based therapy. MAbs; 2012: Taylor & Francis. Oxfordshire United Kingdom

    Google Scholar 

  63. Haisma HJ, Sernee MF, Hooijberg E, Brakenhoff RH, vd Meulen-Muileman IH, Pinedo HM, et al. Construction and characterization of a fusion protein of single-chain anti-CD20 antibody and human β-glucuronidase for antibody-directed enzyme prodrug therapy. Blood. 1998;92(1):184–90.

    Article  CAS  PubMed  Google Scholar 

  64. Št’astný M, Strohalm J, Plocova D, Ulbrich K, Řı́hová B. A possibility to overcome P-glycoprotein (PGP)-mediated multidrug resistance by antibody-targeted drugs conjugated to N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer carrier. Eur J Cancer. 1999;35(3):459–66.

    Article  PubMed  Google Scholar 

  65. Ulbrich K, Strohalm J, Šubr V, Plocová D, Duncan R, Říhová B, editors. Polymeric conjugates of drugs and antibodies for site-specific drug delivery. Macromolecular Symposia; 1996: Wiley Online Library. New Jersey,USA

    Google Scholar 

  66. Cabrera C, Gutiérrez A, Barretina J, Blanco J, Litovchick A, Lapidot A, et al. Anti-HIV activity of a novel aminoglycoside-arginine conjugate. Antivir Res. 2002;53(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  67. Yeh P, Landais D, Lemaitre M, Maury I, Crenne J-Y, Becquart J, et al. Design of yeast-secreted albumin derivatives for human therapy: biological and antiviral properties of a serum albumin-CD4 genetic conjugate. Proc Natl Acad Sci. 1992;89(5):1904–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Raufi A, Ebrahim AS, Al-Katib A. Targeting CD19 in B-cell lymphoma: emerging role of SAR3419. Cancer Manag Res. 2013;5:225.

    PubMed  PubMed Central  Google Scholar 

  69. Kazane SA, Axup JY, Kim CH, Ciobanu M, Wold ED, Barluenga S, et al. Self-assembled antibody multimers through peptide nucleic acid conjugation. J Am Chem Soc. 2012;135(1):340–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Vaidya T, Straubinger RM, Ait-Oudhia S. Development and evaluation of tri-functional immunoliposomes for the treatment of HER2 positive breast cancer. Pharm Res. 2018;35(5):95.

    Article  PubMed  CAS  Google Scholar 

  71. Ishida T, Iden DL, Allen TM. A combinatorial approach to producing sterically stabilized (stealth) immunoliposomal drugs. FEBS Lett. 1999;460(1):129–33.

    Article  CAS  PubMed  Google Scholar 

  72. Allen TM, Mumbengegwi DR, Charrois GJ. Anti-CD19-targeted liposomal doxorubicin improves the therapeutic efficacy in murine B-cell lymphoma and ameliorates the toxicity of liposomes with varying drug release rates. Clin Cancer Res. 2005;11(9):3567–73.

    Article  CAS  PubMed  Google Scholar 

  73. Flasher D, Konopka K, Chamow SM, Dazin P, Ashkenazi A, Pretzer E, et al. Liposome targeting to human immunodeficiency virus type 1-infected cells via recombinant soluble CD4 and CD4 immunoadhesin (CD4-IgG). Biochim Biophys Acta Biomembr. 1994;1194(1):185–96.

    Article  CAS  Google Scholar 

  74. Lu L, Ding Y, Zhang Y, Ho RJ, Zhao Y, Zhang T, et al. Antibody-modified liposomes for tumor-targeting delivery of timosaponin AIII. Int J Nanomedicine. 2018;13:1927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Eliaz RE, Szoka FC. Liposome-encapsulated doxorubicin targeted to CD44: a strategy to kill CD44-overexpressing tumor cells. Cancer Res. 2001;61(6):2592–601.

    CAS  PubMed  Google Scholar 

  76. Jiang T, Zhang Z, Zhang Y, Lv H, Zhou J, Li C, et al. Dual-functional liposomes based on pH-responsive cell-penetrating peptide and hyaluronic acid for tumor-targeted anticancer drug delivery. Biomaterials. 2012;33(36):9246–58.

    Article  CAS  PubMed  Google Scholar 

  77. Alshaer W, Hillaireau H, Vergnaud J, Ismail S, Fattal E. Functionalizing liposomes with anti-CD44 aptamer for selective targeting of cancer cells. Bioconjug Chem. 2014;26(7):1307–13.

    Article  PubMed  CAS  Google Scholar 

  78. Dinauer N, Balthasar S, Weber C, Kreuter J, Langer K, von Briesen H. Selective targeting of antibody-conjugated nanoparticles to leukemic cells and primary T-lymphocytes. Biomaterials. 2005;26(29):5898–906.

    Article  CAS  PubMed  Google Scholar 

  79. Bicho A, Peça IN, Roque A, Cardoso MM. Anti-CD8 conjugated nanoparticles to target mammalian cells expressing CD8. Int J Pharm. 2010;399(1–2):80–6.

    Article  CAS  PubMed  Google Scholar 

  80. Cirstoiu-Hapca A, Bossy-Nobs L, Buchegger F, Gurny R, Delie F. Differential tumor cell targeting of anti-HER2 (Herceptin®) and anti-CD20 (Mabthera®) coupled nanoparticles. Int J Pharm. 2007;331(2):190–6.

    Article  CAS  PubMed  Google Scholar 

  81. Sargazi A, Shiri F, Keikha S, Majd MH. Hyaluronan magnetic nanoparticle for mitoxantrone delivery toward CD44-positive cancer cells. Colloids Surf B: Biointerfaces. 2018;171:150–8.

    Article  CAS  PubMed  Google Scholar 

  82. Hosseinzadeh H, Atyabi F, Varnamkhasti BS, Hosseinzadeh R, Ostad SN, Ghahremani MH, et al. SN38 conjugated hyaluronic acid gold nanoparticles as a novel system against metastatic colon cancer cells. Int J Pharm. 2017;526(1–2):339–52.

    Article  CAS  PubMed  Google Scholar 

  83. Yu M, Jambhrunkar S, Thorn P, Chen J, Gu W, Yu C. Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells. Nanoscale. 2013;5(1):178–83.

    Article  CAS  PubMed  Google Scholar 

  84. Chen Z, Li Z, Lin Y, Yin M, Ren J, Qu X. Bioresponsive hyaluronic acid-capped mesoporous silica nanoparticles for targeted drug delivery. Chem Eur J. 2013;19(5):1778–83.

    Article  CAS  PubMed  Google Scholar 

  85. Xu C, He W, Lv Y, Qin C, Shen L, Yin L. Self-assembled nanoparticles from hyaluronic acid–paclitaxel prodrugs for direct cytosolic delivery and enhanced antitumor activity. Int J Pharm. 2015;493(1–2):172–81.

    Article  CAS  PubMed  Google Scholar 

  86. Li J, Huo M, Wang J, Zhou J, Mohammad JM, Zhang Y, et al. Redox-sensitive micelles self-assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel. Biomaterials. 2012;33(7):2310–20.

    Article  CAS  PubMed  Google Scholar 

  87. Yang Y, Zhao Y, Lan J, Kang Y, Zhang T, Ding Y, et al. Reduction-sensitive CD44 receptor-targeted hyaluronic acid derivative micelles for doxorubicin delivery. Int J Nanomedicine. 2018;13:4361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wu R-L, Sedlmeier G, Kyjacova L, Schmaus A, Philipp J, Thiele W, et al. Hyaluronic acid-CD44 interactions promote BMP4/7-dependent Id1/3 expression in melanoma cells. Sci Rep. 2018;8(1):14913.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Chen S, Yang K, Tuguntaev RG, Mozhi A, Zhang J, Wang PC, et al. Targeting tumor microenvironment with PEG-based amphiphilic nanoparticles to overcome chemoresistance. Nanomedicine. 2016;12(2):269–86.

    Article  CAS  PubMed  Google Scholar 

  90. Yadav AK, Mishra P, Mishra AK, Mishra P, Jain S, Agrawal GP. Development and characterization of hyaluronic acid–anchored PLGA nanoparticulate carriers of doxorubicin. Nanomedicine. 2007;3(4):246–57.

    Article  CAS  PubMed  Google Scholar 

  91. Shen H, Shi S, Zhang Z, Gong T, Sun X. Coating solid lipid nanoparticles with hyaluronic acid enhances antitumor activity against melanoma stem-like cells. Theranostics. 2015;5(7):755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Endsley AN, Ho RJ. Enhanced anti-HIV efficacy of Indinavir after inclusion in CD4 targeted lipid nanoparticles. J Acquir Immune Defic Syndr (1999). 2012;61(4):417.

    Article  CAS  Google Scholar 

  93. Li F, Park S-J, Ling D, Park W, Han JY, Na K, et al. Hyaluronic acid-conjugated graphene oxide/photosensitizer nanohybrids for cancer targeted photodynamic therapy. J Mater Chem B. 2013;1(12):1678–86.

    Article  CAS  PubMed  Google Scholar 

  94. Nevala WK, Butterfield JT, Sutor SL, Knauer DJ, Markovic SN. Antibody-targeted paclitaxel loaded nanoparticles for the treatment of CD20+ B-cell lymphoma. Sci Rep. 2017;7:45682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kim HS, Cho HR, Choi SH, Woo JS, Moon WK. In vivo imaging of tumor transduced with bimodal lentiviral vector encoding human ferritin and green fluorescent protein on a 1.5 T clinical magnetic resonance scanner. Cancer Res. 2010;70(18):7315–24.

    Article  CAS  PubMed  Google Scholar 

  96. Wang X, Yang L, Chen Z, Shin DM. Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin. 2008;58(2):97–110.

    Article  PubMed  Google Scholar 

  97. Capolla S, Garrovo C, Zorzet S, Lorenzon A, Rampazzo E, Spretz R, et al. Targeted tumor imaging of anti-CD20-polymeric nanoparticles developed for the diagnosis of B-cell malignancies. Int J Nanomedicine. 2015;10:4099.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Carter P. Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer. 2001;1(2):118.

    Article  CAS  PubMed  Google Scholar 

  99. Hoffmann RM, Coumbe BG, Josephs DH, Mele S, Ilieva KM, Cheung A, et al. Antibody structure and engineering considerations for the design and function of Antibody Drug Conjugates (ADCs). Oncoimmunology. 2018;7(3):e1395127.

    Article  PubMed  Google Scholar 

  100. A study of BI-1206 in combination with rituximab in subjects with indolent B-cell non-Hodgkin lymphoma [updated April 1, 2019; cited 2019 June 1]. Available from: https://clinicaltrials.gov/ct2/show/NCT03571568?term=BI-1206+with+Rituximab&rank=2.

  101. Burges A, Wimberger P, Kümper C, Gorbounova V, Sommer H, Schmalfeldt B, et al. Effective relief of malignant ascites in patients with advanced ovarian cancer by a trifunctional anti-EpCAM× anti-CD3 antibody: a phase I/II study. Clin Cancer Res. 2007;13(13):3899–905.

    Article  CAS  PubMed  Google Scholar 

  102. Dose-response study of Ibalizumab (monoclonal antibody) plus optimized background regimen in patients with HIV-1 (TMB-202) [updated May 5, 2014; cited 2019 June 1]. Available from: https://clinicaltrials.gov/ct2/show/NCT00784147.

  103. HuMax-CD4 in non-cutaneous T-cell lymphoma [updated July 11, 2018; cited 2019 June 1]. Available from: https://clinicaltrials.gov/ct2/show/NCT00877656.

  104. Rituximab in treating patients with non-Hodgkin’s lymphoma or Hodgkin’s disease [updated July 11, 2018; cited 2019 June 1]. Available from: https://clinicaltrials.gov/ct2/show/NCT00003849.

  105. Porter DL, Hwang W-T, Frey NV, Lacey SF, Shaw PA, Loren AW, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med. 2015;7(303):303ra139.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Hansel TT, Kropshofer H, Singer T, Mitchell JA, George AJ. The safety and side effects of monoclonal antibodies. Nat Rev Drug Discov. 2010;9(4):325.

    Article  CAS  PubMed  Google Scholar 

  107. Gressett SM, Shah SR. Intricacies of bevacizumab-induced toxicities and their management. Ann Pharmacother. 2009;43(3):490–501.

    Article  CAS  PubMed  Google Scholar 

  108. Coiffier B, Lepage E, Brière J, Herbrecht R, Tilly H, Bouabdallah R, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002;346(4):235–42.

    Article  CAS  PubMed  Google Scholar 

  109. Craik DJ, Fairlie DP, Liras S, Price D. The future of peptide-based drugs. Chem Biol Drug Des. 2013;81(1):136–47.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Padma V. Devarajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 American Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kotak, D.J., Todke, P.A., Dandekar, P., Devarajan, P.V. (2019). CD Receptor and Targeting Strategies. In: Devarajan, P., Dandekar, P., D'Souza, A. (eds) Targeted Intracellular Drug Delivery by Receptor Mediated Endocytosis. AAPS Advances in the Pharmaceutical Sciences Series, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-030-29168-6_13

Download citation

Publish with us

Policies and ethics