Skip to main content

Poly-lactic-Acid: Potential Material for Bio-printing Applications

  • Chapter
  • First Online:
Biomanufacturing

Abstract

Exclusive research efforts, made across the world, in the area of material science have resulted into development of a wide range of materials which could be successfully used for numerous biomedical applications. Poly-lactic-acid (PLA) is one of these developments which could be brought in direct contact of the tissues/organs, as a medical device and support structure. For the benefit of the research scholars, this chapter is structured to review the prospective biomedical implications of PLA material, explored in the last 20 years. Further, the efficacy of PLA with different types of three-dimensional printing (3DP) technologies, especially for fused deposition modeling, is also highlighted in response of the mechanical, biological, and topological characteristics of resulting parts. Further, the printing of waste natural fiber embedded PLA structures has experimented, as a case study, via fused deposition modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterial 21:2335–2346

    Article  CAS  Google Scholar 

  2. Gupta B, Revagade N, Hilborn J (2007) Poly(lactic acid) fiber: an overview. Prog Polym Sci 34:455–482

    Article  CAS  Google Scholar 

  3. Yamane H, Sasai K (2003) Effect of the addition of poly(d-lactic acid) on the thermal property of poly(l-lactic acid). Polymer 44:2569–2575

    Article  CAS  Google Scholar 

  4. Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12:1841–1846

    Article  CAS  Google Scholar 

  5. Gunatillake PA, Adhikari R (2003) Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater. 5(1):1–6

    CAS  PubMed  Google Scholar 

  6. Lasprilla AJ, Martinez GA, Lunelli BH, Jardini AL, Maciel Filho R (2012) Poly-lactic acid synthesis for application in biomedical devices—a review. Biotechnol Adv 30(1):321–328

    Article  CAS  PubMed  Google Scholar 

  7. Wang X, Jiang M, Zhou Z, Gou J, Hui D (2001) 3D printing of polymer matrix composites: a review and prospective. Compos B Eng 110:442–458

    Article  CAS  Google Scholar 

  8. Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos B Eng 42(4):856–873

    Article  CAS  Google Scholar 

  9. Ramakrishna S, Mayer J, Wintermantel E, Leong KW (2001) Biomedical applications of polymer-composite materials: a review. Compos Sci Technol 61(9):1189–1224

    Article  CAS  Google Scholar 

  10. Faludi G, Dora G, Renner K, Móczó J, Pukánszky B (2013) Biocomposite from polylactic acid and lignocellulosic fibers: structure–property correlations. Carbohyd Polym 92(2):1767–1775

    Article  CAS  Google Scholar 

  11. Cui Y, Liu Y, Cui Y, Jing X, Zhang P, Chen X (2009) The nanocomposite scaffold of poly (lactide-co-glycolide) and hydroxyapatite surface-grafted with l-lactic acid oligomer for bone repair. Acta Biomater 5(7):2680–2692

    Article  CAS  PubMed  Google Scholar 

  12. Yun YP, Kim SE, Lee JB, Heo DN, Bae MS, Shin DR, Lim SB, Choi KK, Park SJ, Kwon IK (2009) Original paper: comparison of osteogenic differentiation from adipose-derived stem cells, mesenchymal stem cells, and pulp cells on PLGA/hydroxyapatite nanofiber. Tissue Eng Regenerat Med 6(1):336–345

    Google Scholar 

  13. Sanders JE, Bale SD, Neumann T (2002) Tissue response to microfibers of different polymers: polyester, polyethylene, polylactic acid and polyurethane. J Biomed Mater Res 62:222–227

    Article  CAS  PubMed  Google Scholar 

  14. Kellomaki M, Niiranen H, Puumanen K, Ashammakhi N, Waris T, TormaLa P (2000) Bioabsorbable scaffolds for guided bone regeneration and degeneration. Biomaterials 21:2495–2505

    Article  CAS  PubMed  Google Scholar 

  15. Hoveizi E, Nabiuni M, Parivar K, Rajabi-Zeleti S, Tavakol S (2014) Functionalisation and surface modification of electrospun polylactic acid scaffold for tissue engineering. Cell Biol Int 38(1):41–49

    Article  CAS  PubMed  Google Scholar 

  16. Avital S, Bollinger TJ, Wilkinson JD, Marchetti F, Hellinger MD, Sands LR (2005) Preventing intra-abdominal adhesions with polylactic acid film: an animal study. Dis Colon Rectum 48(1):153–157

    Article  PubMed  Google Scholar 

  17. Li G, Wang Z-X, Fu W-J, Hong B-F, Wang X-X, Cao L, Xu F-Q, Song Q, Cui F-Z, Zhang X (2011) Introduction to biodegradable polylactic acid ureteral stent application for treatment of ureteral war injury. BJU Int 108:901–906

    PubMed  Google Scholar 

  18. Qin Y, Yuan M, Li L, Guo S, Yuan M, Li W, Xue J (2006) Use of polylactic acid/polytrimethylene carbonate blends membrane to prevent postoperative adhesions. J Biomed Mater Res Part B Appl Biomater Off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Korean Soc Biomater 79(2):312–319

    Article  CAS  Google Scholar 

  19. Mi HY, Salick MR, Jing X, Jacques BR, Crone WC, Peng XF, Turng LS (2013) Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding. Mater Sci Eng C 33(8):4767–4776

    Article  CAS  Google Scholar 

  20. Kang SW, Jeon O, Kim BS (2005) Poly (lactic-co-glycolic acid) microspheres as an injectable scaffold for cartilage tissue engineering. Tissue Eng 11(3–4):438–447

    Article  CAS  PubMed  Google Scholar 

  21. Chen C, Lv G, Pan C, Song M, Wu C, Guo D, Wang X, Chen B, Gu Z (2007) Poly (lactic acid) (PLA) based nanocomposites—a novel way of drug-releasing. Biomed Mater 2(4):L1

    Article  CAS  PubMed  Google Scholar 

  22. Gollwitzer H, Ibrahim K, Meyer H, Mittelmeier W, Busch R, Stemberger A (2003) Antibacterial poly (d, l-lactic acid) coating of medical implants using a biodegradable drug delivery technology. J Antimicrob Chemother 51(3):585–591

    Article  CAS  PubMed  Google Scholar 

  23. Rancan F, Papakostas D, Hadam S, Hackbarth S, Delair T, Primard C, Verrier B, Sterry W, Blume-Peytavi U, Vogt A (2009) Investigation of polylactic acid (PLA) nanoparticles as drug delivery systems for local dermatotherapy. Pharm Res 26(8):2027–2036

    Article  CAS  PubMed  Google Scholar 

  24. Polimeni G, Koo KT, Pringle GA, Agelan A, Safadi FF, Wikesjö UM (2008) Histopathological observations of a polylactic acid-based device intended for guided bone/tissue regeneration. Clin Implant Dent Relat Res 10(2):99–105

    Article  PubMed  Google Scholar 

  25. Mohiti-Asli M, Saha S, Murphy SV, Gracz H, Pourdeyhimi B, Atala A, Loboa EG (2017) Ibuprofen loaded PLA nanofibrous scaffolds increase proliferation of human skin cells in vitro and promote healing of full thickness incision wounds in vivo. J Biomed Mater Res B Appl Biomater 105(2):327–339

    Article  CAS  PubMed  Google Scholar 

  26. Zhao C, Wu H, Ni J, Zhang S, Zhang X (2017) Development of PLA/Mg composite for orthopedic implant: tunable degradation and enhanced mineralization. Compos Sci Technol 28(147):8–15

    Article  CAS  Google Scholar 

  27. Van Sliedregt A, Radder AM, De Groot K, Van Blitterswijk CA (1992) In vitro biocompatibility testing of polylactides part I proliferation of different cell types. J Mater Sci Mater Med 3(5):365–370

    Article  Google Scholar 

  28. Majola A, Vainionpää S, Vihtonen K, Mero M, Vasenius J, Törmälä P, Rokkanen P (1991) Absorption, biocompatibility, and fixation properties of polylactic acid in bone tissue: an experimental study in rats. Clin Orthop Relat Res 268:260–269

    Google Scholar 

  29. Böstman O, Hirvensalo E, Vainionpää S, Mäkelä A, Vihtonen K, Törmälä P, Rokkanen P (1989) Ankle fractures treated using biodegradable internal fixation. Clin Orthop Relat Res 238:195–203

    Article  Google Scholar 

  30. Maurus PB, Kaeding CC (2004) Bioabsorbable implant material review. Oper Techn Sports Med 12(3):158–160

    Article  Google Scholar 

  31. Hartmann MH (1998) High molecular weight polylactic acid polymers. In: Biopolymers from renewable resources. Springer, Berlin, pp 367–411

    Google Scholar 

  32. Ma PX, Zhang R, Xiao G, Franceschi R (2001) Engineering new bone tissue in vitro on highly porous poly (α-hydroxyl acids)/hydroxyapatite composite scaffolds. J Biomed Mater Res Off J Soc Biomater Jpn Soc Biomater 54(2):284–293

    Article  CAS  Google Scholar 

  33. Goswami J, Bhatnagar N, Mohanty S, Ghosh AK (2013) Processing and characterization of poly (lactic acid) based bioactive composites for biomedical scaffold application. Exp Polym Lett 7(9):767–777

    Article  CAS  Google Scholar 

  34. Chen X, Li Y, Gu N (2010) A novel basalt fiber-reinforced polylactic acid composite for hard tissue repair. Biomed Mater 5(4):044104

    Article  PubMed  CAS  Google Scholar 

  35. Saito N, Takaoka K (2003) New synthetic biodegradable polymers as BMP carriers for bone tissue engineering. Biomaterialsm 24(13):2287–2293

    Article  CAS  Google Scholar 

  36. Murakami N, Saito N, Horiuchi H, Okada T, Nozaki K, Takaoka K (2002) Repair of segmental defects in rabbit humeri with titanium fiber mesh cylinders containing recombinant human bone morphogenetic protein-2 (rhBMP-2) and a synthetic polymer. J Biomed Mater Res Off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Korean Soc Biomater 62(2):169–174

    CAS  Google Scholar 

  37. Zhang Q, Mochalin VN, Neitzel I, Knoke IY, Han J, Klug CA, Zhou JG, Lelkes PI, Gogotsi Y (2011) Fluorescent PLLA-nanodiamond composites for bone tissue engineering. Biomaterials 32(1):87–94

    Article  PubMed  CAS  Google Scholar 

  38. Barber FA, Elrod BF, McGuire DA, Paulos LE (1995) Preliminary results of an absorbable interference screw. Arthroscopy 11(5):537–548

    Article  CAS  PubMed  Google Scholar 

  39. Matsusue Y, Nakamura T, Suzuki S, Iwasaki R (1996) Biodegradable pin fixation of osteochondral fragments of the knee. Clin Orthop Relat Res 322:166–173

    Article  Google Scholar 

  40. Stähelin AC, Weiler A, Rüfenacht H, Hoffmann R, Geissmann A, Feinstein R (1997) Clinical degradation and biocompatibility of different bioabsorbable interference screws: a report of six cases. Arthroscopy 13(2):238–244

    Article  PubMed  Google Scholar 

  41. Lavery LA, Higgins KR, Ashry HR, Athanasiou KA (1994) Mechanical characteristics of poly-l-lactic acid absorbable screws and stainless steel screws in basilar osteotomies of the first metatarsal. J Foot Ankle Surg Off Publ Am Coll Foot Ankle Surg 33(3):249–254

    CAS  Google Scholar 

  42. Bucholz RW, Henry S, Henley BM (1994) Fixation with bioabsorbable screws for the treatment of fractures of the ankle. JBJS 76(3):319–324

    Article  CAS  Google Scholar 

  43. Casteleyn PP, Handelberg F, Haentjens P (1992) Biodegradable rods versus Kirschner wire fixation of wrist fractures. A randomised trial. J Bone Joint Surg Br 74(6):858–861

    Article  CAS  PubMed  Google Scholar 

  44. Hope PG, Williamson DM, Coates CJ, Cole WG (1991) Biodegradable pin fixation of elbow fractures in children. A randomised trial. J Bone Joint Surg Br 73(6):965–968

    Article  CAS  PubMed  Google Scholar 

  45. Haers PE, Suuronen R, Lindqvist C, Sailer H (1998) Biodegradable polylactide plates and screws in orthognathic surgery. J Craniomaxillofac Surg 26(2):87–91

    Article  CAS  PubMed  Google Scholar 

  46. Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H (2010) Biomedical applications of chitin and chitosan based nanomaterials—a short review. Carbohyd Polym 82(2):227–232

    Article  CAS  Google Scholar 

  47. Shalumon KT, Binulal NS, Selvamurugan N, Nair SV, Menon D, Furuike T, Tamura H, Jayakumar R (2009) Electrospinning of carboxymethyl chitin/poly (vinyl alcohol) nanofibrous scaffolds for tissue engineering applications. Carbohyd Polym 77(4):863–869

    Article  CAS  Google Scholar 

  48. Onuh SO, Yusuf YY (1999) Rapid prototyping technology: applications and benefits for rapid product development. J Intell Manuf 10(3–4):301–311

    Article  Google Scholar 

  49. Yang S, Leong K-F, Du Z, Chua C-K (2002) The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng 8:1–11. https://doi.org/10.1089/107632702753503009

    Article  CAS  PubMed  Google Scholar 

  50. Garg A, Tai K, Lee CH, Savalani MM (2013) A hybrid M5-genetic programming approach for ensuring greater trustworthiness of prediction ability in modelling of FDM process. J Intell Manuf https://doi.org/10.1007/s10845-013-0734-1

  51. Yan X, Gu P (1996) A review of rapid prototyping technologies and systems. Comput Des 28:307–318. https://doi.org/10.1016/0010-4485(95)00035-6

    Article  Google Scholar 

  52. Pham DT, Gault RS (1998) A comparison of rapid prototyping technologies. Int J Mach Tools Manuf 38:1257–1287. https://doi.org/10.1016/S0890-6955(97)00137-5

    Article  Google Scholar 

  53. Sugavaneswaran M, Arumaikkannu G (2014) Modelling for randomly oriented multi material additive manufacturing component and its fabrication. Mater Des 54:779–785. https://doi.org/10.1016/j.matdes.2013.08.102

    Article  Google Scholar 

  54. Yang S, Leong KF, Du Z, Chua CK (2001) The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 7(6):679–689

    Article  CAS  PubMed  Google Scholar 

  55. Rankin TM, Giovinco NA, Cucher DJ, Watts G, Hurwitz B, Armstrong DG (2014) Three-dimensional printing surgical instruments: are we there yet? J Surg Res 189(2):193–197

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mattana G, Briand D, Marette A, Quintero AV, de Rooij NF (2015) Polylactic acid as a biodegradable material for all-solution-processed organic electronic devices. Org Electron 17:77–86

    Article  CAS  Google Scholar 

  57. Ge Z, Wang L, Heng BC, Tian XF, Lu K, Tai Weng Fan V, Yeo JF, Cao T, Tan E (2009) Proliferation and differentiation of human osteoblasts within 3D printed poly-lactic-co-glycolic acid scaffolds. J Biomater Appl 23(6):533–547

    Article  CAS  Google Scholar 

  58. Serra T, Planell JA, Navarro M (2013) High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomater 9(3):5521–5530

    Article  CAS  PubMed  Google Scholar 

  59. Esposito Corcione C, Gervaso F, Scalera F, Montagna F, Sannino A, Maffezzoli A (2017) The feasibility of printing polylactic acid–nanohydroxyapatite composites using a low-cost fused deposition modeling 3D printer. J Appl Polym Sci 134(13):44656

    Google Scholar 

  60. Zhang H, Mao X, Du Z, Jiang W, Han X, Zhao D, Han D, Li Q (2016) Three dimensional printed macroporous polylactic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical-size rat calvarial defect model. Sci Technol Adv Mater 17(1):136–148

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kao CT, Lin CC, Chen YW, Yeh CH, Fang HY, Shie MY (2015) Poly (dopamine) coating of 3D printed poly (lactic acid) scaffolds for bone tissue engineering. Mater Sci Eng, C 56:165–173

    Article  CAS  Google Scholar 

  62. Lin CC, Ho CC (2005) Micropatterning proteins and cells on polylactic acid and poly (lactide-co-glycolide). Biomaterials 26(17):3655–3662

    Article  CAS  PubMed  Google Scholar 

  63. Wang M, Favi P, Cheng X, Golshan NH, Ziemer KS, Keidar M, Webster TJ (2016) Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Acta Biomater 46:256–265

    Article  CAS  PubMed  Google Scholar 

  64. Senatov FS, Niaza KV, Zadorozhnyy MY, Maksimkin AV, Kaloshkin SD, Estrin YZ (2016) Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds. J Mech Behav Biomed Mater 57:139–148

    Article  CAS  PubMed  Google Scholar 

  65. Castilho M, Moseke C, Ewald A, Gbureck U, Groll J, Pires I, Teßmar J, Vorndran E (2014) Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects. Biofabrication 6(1):015006

    Article  PubMed  CAS  Google Scholar 

  66. Almeida CR, Serra T, Oliveira MI, Planell JA, Barbosa MA, Navarro M (2014) Impact of 3-D printed PLA-and chitosan-based scaffolds on human monocyte/macrophage responses: unraveling the effect of 3-D structures on inflammation. Acta Biomater 10(2):613–622

    Article  CAS  PubMed  Google Scholar 

  67. Shaffer S, Yang K, Vargas J, Di Prima MA, Voit W (2014) On reducing anisotropy in 3D printed polymers via ionizing radiation. Polymer 55(23):5969–5979

    Article  CAS  Google Scholar 

  68. Sandler N, Salmela I, Fallarero A, Rosling A, Khajeheian M, Kolakovic R, Genina N, Nyman J, Vuorela P (2014) Towards fabrication of 3D printed medical devices to prevent biofilm formation. Int J Pharm 459(1–2):62–64

    Article  CAS  PubMed  Google Scholar 

  69. Narayanan LK, Huebner P, Fisher MB, Spang JT, Starly B, Shirwaiker RA (2016) 3D-bioprinting of polylactic acid (PLA) nanofiber–alginate hydrogel bioink containing human adipose-derived stem cells. ACS Biomater Sci Eng 2(10):1732–1742

    Article  CAS  Google Scholar 

  70. Tiersch TR, Monroe WT (2016) Three-dimensional printing with polylactic acid (PLA) thermoplastic offers new opportunities for cryobiology. Cryobiology 73(3):396–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yeon YK, Park HS, Lee JM, Lee JS, Lee YJ, Sultan MT, Seo YB, Lee OJ, Kim SH, Park CH (2018) New concept of 3D printed bone clip (polylactic acid/hydroxyapatite/silk composite) for internal fixation of bone fractures. J Biomater Sci Polym Ed 29(7–9):894–906

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunpreet Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, S. et al. (2019). Poly-lactic-Acid: Potential Material for Bio-printing Applications. In: Prakash, C., et al. Biomanufacturing. Springer, Cham. https://doi.org/10.1007/978-3-030-13951-3_3

Download citation

Publish with us

Policies and ethics