Skip to main content

Pericytes in the Heart

  • Chapter
  • First Online:
Pericyte Biology in Different Organs

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1122))

Abstract

Mural cells known as pericytes envelop the endothelial layer of microvessels throughout the body and have been described to have tissue-specific functions. Cardiac pericytes are abundantly found in the heart, but they are relatively understudied. Currently, their importance is emerging in cardiovascular homeostasis and dysfunction due to their pleiotropism. They are known to play key roles in vascular tone and vascular integrity as well as angiogenesis. However, their dysfunctional presence and/or absence is critical in the mechanisms that lead to cardiac pathologies such as myocardial infarction, fibrosis, and thrombosis. Moreover, they are targeted as a therapeutic potential due to their mesenchymal properties that could allow them to repair and regenerate a damaged heart. They are also sought after as a cell-based therapy based on their healing potential in preclinical studies of animal models of myocardial infarction. Therefore, recognizing the importance of cardiac pericytes and understanding their biology will lead to new therapeutic concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3g5:

Ganglioside 3g5

αSMA:

Alpha-smooth muscle actin

Alk-p:

Alkaline phosphatase

Angpt-1:

Angiopoietin-1

Angpt-2:

Angiopoietin-2

BDNF:

Endothelial brain-derived neurotrophic factor

CNP:

C-type natriuretic peptide

cPC:

Cardiac pericyte

CTGF/CCN2:

Connective tissue growth factor

Cx43:

Connexin-43

CXCR3:

Chemokine receptor 3

ECM:

Extracellular matrix

Gli1:

Glioma-associated oncogene 1

HB-EGF:

Heparin-binding epidermal growth factor

HGF:

Hepatocyte growth factor

LRP:

Low-density lipoprotein receptor-related protein 6

MI:

Myocardial infarction

MMPs:

Matrix metalloproteinases

MSC:

Mesenchymal stem cells

NANOG:

Homeobox transcription factor Nanog

NG2:

Neural glial 2

OCT4:

Octamer-binding transcription factor 4

p75 NTR:

Neurotrophin receptor

PDGFbb:

Platelet-derived growth factor bb

PDGFRβ:

Platelet-derived growth factor receptor beta

pro-NGF:

Pro-nerve growth factor

RGS5:

Regulator of G protein signaling 5

S1P:

Sphingosine-1-phosphate

SIRT3:

Sirtuin 3

SorCS2:

Sortilin-related VPS10 domain-containing receptor 2

SOX2:

Sex-determining region box

SVPs:

Saphenous vein-derived pericyte progenitor cells

Tbx18:

T-box protein 18

TF:

Tissue factor

TGFβ:

Transforming growth factor beta

TrkB:

Tropomyosin receptor kinase B

VCAF:

Vascular calcification-associated factor

VEGF-A:

Vascular endothelial growth factor A

VEGFR2:

Vascular endothelial growth factor receptor 2

vWF:

von Willebrand factor

References

  • Al Ahmad A, Gassmann M, Ogunshola OO (2009) Maintaining blood-brain barrier integrity: pericytes perform better than astrocytes during prolonged oxygen deprivation. J Cell Physiol 218(3):612–622

    Article  PubMed  CAS  Google Scholar 

  • Alarcon-Martinez L et al (2018) Capillary pericytes express alpha-smooth muscle actin, which requires prevention of filamentous-actin depolymerization for detection. Elife 7

    Google Scholar 

  • Alexander MY et al (2005) Identification and characterization of vascular calcification-associated factor, a novel gene upregulated during vascular calcification in vitro and in vivo. Arterioscler Thromb Vasc Biol 25(9):1851–1857

    Article  CAS  PubMed  Google Scholar 

  • Alvino VV et al (2018) Transplantation of allogeneic pericytes improves myocardial vascularization and reduces interstitial fibrosis in a swine model of reperfused acute myocardial infarction. J Am Heart Assoc 7(2)

    Google Scholar 

  • Anastasia A et al (2014) Trkb signaling in pericytes is required for cardiac microvessel stabilization. PLoS One 9(1):e87406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97(6):512–523

    Article  CAS  PubMed  Google Scholar 

  • Armulik A et al (2010) Pericytes regulate the blood-brain barrier. Nature 468(7323):557–561

    Article  CAS  PubMed  Google Scholar 

  • Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21(2):193–215

    Article  CAS  PubMed  Google Scholar 

  • Avolio E et al (2015a) Expansion and characterization of neonatal cardiac pericytes provides a novel cellular option for tissue engineering in congenital heart disease. J Am Heart Assoc 4(6):e002043

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Avolio E et al (2015b) Combined intramyocardial delivery of human pericytes and cardiac stem cells additively improves the healing of mouse infarcted hearts through stimulation of vascular and muscular repair. Circ Res 116(10):e81–e94

    Article  CAS  PubMed  Google Scholar 

  • Bardeesi ASA et al (2017) A novel role of cellular interactions in vascular calcification. J Transl Med 15(1):95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bell RD et al (2010) Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68(3):409–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benest AV et al (2006) VEGF and angiopoietin-1 stimulate different angiogenic phenotypes that combine to enhance functional neovascularization in adult tissue. Microcirculation 13(6):423–437

    Article  CAS  PubMed  Google Scholar 

  • Bergers G, Song S (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol 7(4):452–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birbrair A et al (2014) Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Res Ther 5(6):122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bischoff FC et al (2017) Identification and functional characterization of hypoxia-induced endoplasmic reticulum stress regulating lncRNA (HypERlnc) in Pericytes. Circ Res 121(4):368–375

    Article  CAS  PubMed  Google Scholar 

  • Bjarnegard M et al (2004) Endothelium-specific ablation of PDGFB leads to pericyte loss and glomerular, cardiac and placental abnormalities. Development 131(8):1847–1857

    Article  CAS  PubMed  Google Scholar 

  • Bobik A et al (1999) Distinct patterns of transforming growth factor-beta isoform and receptor expression in human atherosclerotic lesions. Colocalization implicates TGF-beta in fibrofatty lesion development. Circulation 99(22):2883–2891

    Article  CAS  PubMed  Google Scholar 

  • Bodnar RJ et al (2013) Pericyte regulation of vascular remodeling through the CXC receptor 3. Arterioscler Thromb Vasc Biol 33(12):2818–2829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borysova L et al (2013) How calcium signals in myocytes and pericytes are integrated across in situ microvascular networks and control microvascular tone. Cell Calcium 54(3):163–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boscolo E et al (2011) JAGGED1 signaling regulates hemangioma stem cell-to-pericyte/vascular smooth muscle cell differentiation. Arterioscler Thromb Vasc Biol 31(10):2181–2192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai CL et al (2008a) A myocardial lineage derives from Tbx18 epicardial cells. Nature 454(7200):104–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai J et al (2008b) The angiopoietin/Tie-2 system regulates pericyte survival and recruitment in diabetic retinopathy. Invest Ophthalmol Vis Sci 49(5):2163–2171

    Article  PubMed  Google Scholar 

  • Campagnolo P et al (2010) Human adult vena saphena contains perivascular progenitor cells endowed with clonogenic and proangiogenic potential. Circulation 121(15):1735–1745

    Article  PubMed  PubMed Central  Google Scholar 

  • Canfield AE et al (2000) Role of pericytes in vascular calcification: a review. Z Kardiol 89(Suppl 2):20–27

    Article  PubMed  Google Scholar 

  • Caporali A et al (2017) Contribution of pericyte paracrine regulation of the endothelium to angiogenesis. Pharmacol Ther 171:56–64

    Article  CAS  PubMed  Google Scholar 

  • Cappellari O et al (2013) Dll4 and PDGF-BB convert committed skeletal myoblasts to pericytes without erasing their myogenic memory. Dev Cell 24(6):586–599

    Article  CAS  PubMed  Google Scholar 

  • Chen CW et al (2013) Human pericytes for ischemic heart repair. Stem Cells 31(2):305–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen WC et al (2015) Human myocardial pericytes: multipotent mesodermal precursors exhibiting cardiac specificity. Stem Cells 33(2):557–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q et al (2016) Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells. Nat Commun 7:12422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chintalgattu V et al (2013) Coronary microvascular pericytes are the cellular target of sunitinib malate-induced cardiotoxicity. Sci Transl Med 5(187):187ra69

    Article  PubMed  CAS  Google Scholar 

  • Cho H et al (2003) Pericyte-specific expression of Rgs5: implications for PDGF and EDG receptor signaling during vascular maturation. FASEB J 17(3):440–442

    Article  CAS  PubMed  Google Scholar 

  • Collett GD, Canfield AE (2005) Angiogenesis and pericytes in the initiation of ectopic calcification. Circ Res 96(9):930–938

    Article  CAS  PubMed  Google Scholar 

  • Corselli M et al (2012) The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells. Stem Cells Dev 21(8):1299–1308

    Article  CAS  PubMed  Google Scholar 

  • Costa MA et al (2018) Pericytes constrict blood vessels after myocardial ischemia. J Mol Cell Cardiol 116:1–4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Covas DT et al (2008) Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Exp Hematol 36(5):642–654

    Article  CAS  PubMed  Google Scholar 

  • Crisan M et al (2008) Purification and long-term culture of multipotent progenitor cells affiliated with the walls of human blood vessels: myoendothelial cells and pericytes. Methods Cell Biol 86:295–309

    Article  CAS  PubMed  Google Scholar 

  • Crisan M et al (2012) Perivascular cells for regenerative medicine. J Cell Mol Med 16(12):2851–2860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dar A et al (2012) Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb. Circulation 125(1):87–99

    Article  PubMed  Google Scholar 

  • Darland DC et al (2003) Pericyte production of cell-associated VEGF is differentiation-dependent and is associated with endothelial survival. Dev Biol 264(1):275–288

    Article  CAS  PubMed  Google Scholar 

  • Davaine JM et al (2014) Osteoprotegerin, pericytes and bone-like vascular calcification are associated with carotid plaque stability. PLoS One 9(9):e107642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dellavalle A et al (2007) Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol 9(3):255–267

    Article  CAS  PubMed  Google Scholar 

  • Dewi NA et al (2018) Mechanism of retinal pericyte migration through angiopoietin/Tie-2 signaling pathway on diabetic rats. Int J Ophthalmol 11(3):375–381

    PubMed  PubMed Central  Google Scholar 

  • Dias Moura Prazeres PH et al (2017) Pericytes are heterogeneous in their origin within the same tissue. Dev Biol 427(1):6–11

    Article  PubMed  CAS  Google Scholar 

  • Dias DO et al (2018) Reducing pericyte-derived scarring promotes recovery after spinal cord injury. Cell 173(1):153–165. e22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eilken HM et al (2017) Pericytes regulate VEGF-induced endothelial sprouting through VEGFR1. Nat Commun 8(1):1574

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ellison-Hughes GM, Madeddu P (2017) Exploring pericyte and cardiac stem cell secretome unveils new tactics for drug discovery. Pharmacol Ther 171:1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang S, Salven P (2011) Stem cells in tumor angiogenesis. J Mol Cell Cardiol 50(2):290–295

    Article  CAS  PubMed  Google Scholar 

  • Farrington-Rock C et al (2004) Chondrogenic and adipogenic potential of microvascular pericytes. Circulation 110(15):2226–2232

    Article  CAS  PubMed  Google Scholar 

  • Feng J et al (2011) Dual origin of mesenchymal stem cells contributing to organ growth and repair. Proc Natl Acad Sci U S A 108(16):6503–6508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Klett F et al (2010) Pericytes in capillaries are contractile in vivo, but arterioles mediate functional hyperemia in the mouse brain. Proc Natl Acad Sci U S A 107(51):22290–22295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franco M et al (2011) Pericytes promote endothelial cell survival through induction of autocrine VEGF-A signaling and Bcl-w expression. Blood 118(10):2906–2917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuxe J et al (2011) Pericyte requirement for anti-leak action of angiopoietin-1 and vascular remodeling in sustained inflammation. Am J Pathol 178(6):2897–2909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geevarghese A, Herman IM (2014) Pericyte-endothelial crosstalk: implications and opportunities for advanced cellular therapies. Transl Res 163(4):296–306

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerhardt H, Betsholtz C (2003) Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 314(1):15–23

    Article  PubMed  Google Scholar 

  • Greenhalgh SN, Iredale JP, Henderson NC (2013) Origins of fibrosis: pericytes take Centre stage. F1000Prime Rep 5:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Gubernator M et al (2015) Epigenetic profile of human adventitial progenitor cells correlates with therapeutic outcomes in a mouse model of limb ischemia. Arterioscler Thromb Vasc Biol 35(3):675–688

    Article  CAS  PubMed  Google Scholar 

  • Guimaraes-Camboa N et al (2017) Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo. Cell Stem Cell 20(3):345–359. e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall CN et al (2014) Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508(7494):55–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton NB, Attwell D, Hall CN (2010) Pericyte-mediated regulation of capillary diameter: a component of neurovascular coupling in health and disease. Front Neuroenergetics 2

    Google Scholar 

  • He Q, Spiro MJ (1995) Isolation of rat heart endothelial cells and pericytes: evaluation of their role in the formation of extracellular matrix components. J Mol Cell Cardiol 27(5):1173–1183

    Article  CAS  PubMed  Google Scholar 

  • He X, Zeng H, Chen JX (2016) Ablation of SIRT3 causes coronary microvascular dysfunction and impairs cardiac recovery post myocardial ischemia. Int J Cardiol 215:349–357

    Article  PubMed  PubMed Central  Google Scholar 

  • Hellstrom M et al (2001) Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 153(3):543–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson NC et al (2013) Targeting of alphav integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat Med 19(12):1617–1624

    Article  CAS  PubMed  Google Scholar 

  • Hughes S, Chan-Ling T (2004) Characterization of smooth muscle cell and pericyte differentiation in the rat retina in vivo. Invest Ophthalmol Vis Sci 45(8):2795–2806

    Article  PubMed  Google Scholar 

  • Ivanov D et al (2001) Expression of cell adhesion molecule T-cadherin in the human vasculature. Histochem Cell Biol 115(3):231–242

    CAS  PubMed  Google Scholar 

  • Ivanova EA, Orekhov AN (2016) Cellular model of Atherogenesis based on pluripotent vascular wall pericytes. Stem Cells Int 2016:7321404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ivarsson M et al (1996) Recruitment of type I collagen producing cells from the microvasculature in vitro. Exp Cell Res 229(2):336–349

    Article  CAS  PubMed  Google Scholar 

  • Juchem G et al (2010) Pericytes in the macrovascular intima: possible physiological and pathogenetic impact. Am J Physiol Heart Circ Physiol 298(3):H754–H770

    Article  CAS  PubMed  Google Scholar 

  • Kaminski WE et al (2001) Basis of hematopoietic defects in platelet-derived growth factor (PDGF)-B and PDGF beta-receptor null mice. Blood 97(7):1990–1998

    Article  CAS  PubMed  Google Scholar 

  • Katare RG, Madeddu P (2013) Pericytes from human veins for treatment of myocardial ischemia. Trends Cardiovasc Med 23(3):66–70

    Article  PubMed  PubMed Central  Google Scholar 

  • Katare R et al (2011) Transplantation of human pericyte progenitor cells improves the repair of infarcted heart through activation of an angiogenic program involving micro-RNA-132. Circ Res 109(8):894–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly-Goss MR et al (2014) Targeting pericytes for angiogenic therapies. Microcirculation 21(4):345–357

    Article  PubMed  PubMed Central  Google Scholar 

  • Keramati AR et al (2011) Wild-type LRP6 inhibits, whereas atherosclerosis-linked LRP6R611C increases PDGF-dependent vascular smooth muscle cell proliferation. Proc Natl Acad Sci U S A 108(5):1914–1918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Braun T (2015) Targeting the cellular origin of organ fibrosis. Cell Stem Cell 16(1):3–4

    Article  CAS  PubMed  Google Scholar 

  • Kirton JP et al (2006) Dexamethasone downregulates calcification-inhibitor molecules and accelerates osteogenic differentiation of vascular pericytes: implications for vascular calcification. Circ Res 98(10):1264–1272

    Article  CAS  PubMed  Google Scholar 

  • Kirton JP et al (2007) Wnt/beta-catenin signaling stimulates chondrogenic and inhibits adipogenic differentiation of pericytes: potential relevance to vascular disease? Circ Res 101(6):581–589

    Article  CAS  PubMed  Google Scholar 

  • Klein D et al (2011) Vascular wall-resident CD44+ multipotent stem cells give rise to pericytes and smooth muscle cells and contribute to new vessel maturation. PLoS One 6(5):e20540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotecki M et al (2010) Calpain- and Talin-dependent control of microvascular pericyte contractility and cellular stiffness. Microvasc Res 80(3):339–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovacic JC et al (2012) Epithelial-to-mesenchymal and endothelial-to-mesenchymal transition: from cardiovascular development to disease. Circulation 125(14):1795–1808

    Article  PubMed  PubMed Central  Google Scholar 

  • Kramann R et al (2015a) Pharmacological GLI2 inhibition prevents myofibroblast cell-cycle progression and reduces kidney fibrosis. J Clin Invest 125(8):2935–2951

    Article  PubMed  PubMed Central  Google Scholar 

  • Kramann R et al (2015b) Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 16(1):51–66

    Article  CAS  PubMed  Google Scholar 

  • Kramann R et al (2017) Gli1(+) Pericyte loss induces capillary rarefaction and proximal tubular injury. J Am Soc Nephrol 28(3):776–784

    Article  CAS  PubMed  Google Scholar 

  • Kumar A et al (2017) Specification and diversification of Pericytes and smooth muscle cells from Mesenchymoangioblasts. Cell Rep 19(9):1902–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S et al (2010) Pericyte actomyosin-mediated contraction at the cell-material interface can modulate the microvascular niche. J Phys Condens Matter 22(19):194115

    Article  PubMed  CAS  Google Scholar 

  • Leszczynska A, Murphy JM (2018) Vascular calcification: is it rather a stem/progenitor cells driven phenomenon? Front Bioeng Biotechnol 6:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin SL et al (2008) Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am J Pathol 173(6):1617–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y et al (2007) Hepatocyte growth factor and c-met expression in pericytes: implications for atherosclerotic plaque development. J Pathol 212(1):12–19

    Article  CAS  PubMed  Google Scholar 

  • Magnusson PU et al (2007) Platelet-derived growth factor receptor-beta constitutive activity promotes angiogenesis in vivo and in vitro. Arterioscler Thromb Vasc Biol 27(10):2142–2149

    Article  CAS  PubMed  Google Scholar 

  • Maisonpierre PC et al (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277(5322):55–60

    Article  CAS  PubMed  Google Scholar 

  • Matsugi T, Chen Q, Anderson DR (1997) Adenosine-induced relaxation of cultured bovine retinal pericytes. Invest Ophthalmol Vis Sci 38(13):2695–2701

    CAS  PubMed  Google Scholar 

  • Matsuki M et al (2015) Ninjurin1 is a novel factor to regulate angiogenesis through the function of pericytes. Circ J 79(6):1363–1371

    Article  CAS  PubMed  Google Scholar 

  • Matthews BG et al (2016) Osteogenic potential of alpha smooth muscle actin expressing muscle resident progenitor cells. Bone 84:69–77

    Article  CAS  PubMed  Google Scholar 

  • Mazzoni J, Cutforth T, Agalliu D (2015) Dissecting the role of smooth muscle cells versus Pericytes in regulating cerebral blood flow using in vivo optical imaging. Neuron 87(1):4–6

    Article  CAS  PubMed  Google Scholar 

  • McCullough PA, Olobatoke A, Vanhecke TE (2011) Galectin-3: a novel blood test for the evaluation and management of patients with heart failure. Rev Cardiovasc Med 12(4):200–210

    PubMed  Google Scholar 

  • McGuire PG et al (2011) Pericyte-derived sphingosine 1-phosphate induces the expression of adhesion proteins and modulates the retinal endothelial cell barrier. Arterioscler Thromb Vasc Biol 31(12):e107–e115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra A et al (2014) Imaging pericytes and capillary diameter in brain slices and isolated retinae. Nat Protoc 9(2):323–336

    Article  CAS  PubMed  Google Scholar 

  • Mitchell TS et al (2008) RGS5 expression is a quantitative measure of pericyte coverage of blood vessels. Angiogenesis 11(2):141–151

    Article  CAS  PubMed  Google Scholar 

  • Murray IR et al (2017) Skeletal and cardiac muscle pericytes: functions and therapeutic potential. Pharmacol Ther 171:65–74

    Article  CAS  PubMed  Google Scholar 

  • Murshed M, McKee MD (2010) Molecular determinants of extracellular matrix mineralization in bone and blood vessels. Curr Opin Nephrol Hypertens 19(4):359–365

    Article  CAS  PubMed  Google Scholar 

  • Nadal JA et al (2002) Angiotensin II stimulates migration of retinal microvascular pericytes: involvement of TGF-beta and PDGF-BB. Am J Physiol Heart Circ Physiol 282(2):H739–H748

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa S et al (2009) A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int 54(3–4):253–263

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y et al (1995) Expression of local hepatocyte growth factor system in vascular tissues. Biochem Biophys Res Commun 215(2):483–488

    Article  CAS  PubMed  Google Scholar 

  • Nees S et al (2012a) Isolation, bulk cultivation, and characterization of coronary microvascular pericytes: the second most frequent myocardial cell type in vitro. Am J Physiol Heart Circ Physiol 302(1):H69–H84

    Article  CAS  PubMed  Google Scholar 

  • Nees S et al (2012b) Wall structures of myocardial precapillary arterioles and postcapillary venules reexamined and reconstructed in vitro for studies on barrier functions. Am J Physiol Heart Circ Physiol 302(1):H51–H68

    Article  CAS  PubMed  Google Scholar 

  • Nees S et al (2013) Abundant Pericytes in the venous intima and the vasa Venarum: evidence for their key role in venous thrombosis. J Vasc Surg Venous Lymphat Disord 1(1):113

    Article  CAS  PubMed  Google Scholar 

  • Neuhaus AA et al (2017) Novel method to study pericyte contractility and responses to ischaemia in vitro using electrical impedance. J Cereb Blood Flow Metab 37(6):2013–2024

    Article  PubMed  Google Scholar 

  • Nisancioglu MH et al (2008) Generation and characterization of rgs5 mutant mice. Mol Cell Biol 28(7):2324–2331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Farrell FM, Attwell D (2014) A role for pericytes in coronary no-reflow. Nat Rev Cardiol 11(7):427–432

    Article  PubMed  Google Scholar 

  • O’Farrell FM et al (2017) Capillary pericytes mediate coronary no-reflow after myocardial ischaemia. Elife 6

    Google Scholar 

  • Osterud B, Bjorklid E (2006) Sources of tissue factor. Semin Thromb Hemost 32(1):11–23

    Article  PubMed  Google Scholar 

  • Paik JH et al (2004) Sphingosine 1-phosphate receptor regulation of N-cadherin mediates vascular stabilization. Genes Dev 18(19):2392–2403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peppiatt CM et al (2006) Bidirectional control of CNS capillary diameter by pericytes. Nature 443(7112):700–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinto AR et al (2016) Revisiting cardiac cellular composition. Circ Res 118(3):400–409

    Article  CAS  PubMed  Google Scholar 

  • Psaltis PJ et al (2010) Enrichment for STRO-1 expression enhances the cardiovascular paracrine activity of human bone marrow-derived mesenchymal cell populations. J Cell Physiol 223(2):530–540

    CAS  PubMed  Google Scholar 

  • Ribatti D, Nico B, Crivellato E (2011) The role of pericytes in angiogenesis. Int J Dev Biol 55(3):261–268

    Article  CAS  PubMed  Google Scholar 

  • Sa da Bandeira D, Casamitjana J, Crisan M (2017) Pericytes, integral components of adult hematopoietic stem cell niches. Pharmacol Ther 171:104–113

    Article  CAS  PubMed  Google Scholar 

  • Sagare AP et al (2013) Pericyte loss influences Alzheimer-like neurodegeneration in mice. Nat Commun 4:2932

    Article  PubMed  CAS  Google Scholar 

  • Schrimpf C, Duffield JS (2011) Mechanisms of fibrosis: the role of the pericyte. Curr Opin Nephrol Hypertens 20(3):297–305

    Article  PubMed  Google Scholar 

  • Sengillo JD et al (2013) Deficiency in mural vascular cells coincides with blood-brain barrier disruption in Alzheimer’s disease. Brain Pathol 23(3):303–310

    Article  PubMed  Google Scholar 

  • Shepro D, Morel NM (1993) Pericyte physiology. FASEB J 7(11):1031–1038

    Article  CAS  PubMed  Google Scholar 

  • Shiwen X et al (2009) Pericytes display increased CCN2 expression upon culturing. J Cell Commun Signal 3(1):61–64

    Article  PubMed  PubMed Central  Google Scholar 

  • Siao CJ et al (2012) ProNGF, a cytokine induced after myocardial infarction in humans, targets pericytes to promote microvascular damage and activation. J Exp Med 209(12):2291–2305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sims DE (1986) The pericyte—a review. Tissue Cell 18(2):153–174

    Article  CAS  PubMed  Google Scholar 

  • Spiranec K et al (2018) Endothelial C-type natriuretic peptide acts on Pericytes to regulate microcirculatory flow and blood pressure. Circulation 138(5):494–508

    Article  CAS  PubMed  Google Scholar 

  • Stallcup WB (2013) Bidirectional myoblast-pericyte plasticity. Dev Cell 24(6):563–564

    Article  CAS  PubMed  Google Scholar 

  • Stapor PC et al (2014) Pericyte dynamics during angiogenesis: new insights from new identities. J Vasc Res 51(3):163–174

    Article  PubMed  Google Scholar 

  • Stratman AN, Davis GE (2012) Endothelial cell-pericyte interactions stimulate basement membrane matrix assembly: influence on vascular tube remodeling, maturation, and stabilization. Microsc Microanal 18(1):68–80

    Article  CAS  PubMed  Google Scholar 

  • Stratman AN et al (2010) Endothelial-derived PDGF-BB and HB-EGF coordinately regulate pericyte recruitment during vasculogenic tube assembly and stabilization. Blood 116(22):4720–4730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundberg C et al (1996) Pericytes as collagen-producing cells in excessive dermal scarring. Lab Investig 74(2):452–466

    CAS  PubMed  Google Scholar 

  • Tao YK et al (2017) Notch3 deficiency impairs coronary microvascular maturation and reduces cardiac recovery after myocardial ischemia. Int J Cardiol 236:413–422

    Article  PubMed  PubMed Central  Google Scholar 

  • Tattersall IW et al (2016) In vitro modeling of endothelial interaction with macrophages and pericytes demonstrates notch signaling function in the vascular microenvironment. Angiogenesis 19(2):201–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teichert M et al (2017) Pericyte-expressed Tie2 controls angiogenesis and vessel maturation. Nat Commun 8:16106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tillet E et al (2005) N-cadherin deficiency impairs pericyte recruitment, and not endothelial differentiation or sprouting, in embryonic stem cell-derived angiogenesis. Exp Cell Res 310(2):392–400

    Article  CAS  PubMed  Google Scholar 

  • Tintut Y et al (2003) Multilineage potential of cells from the artery wall. Circulation 108(20):2505–2510

    Article  PubMed  Google Scholar 

  • Toma I, McCaffrey TA (2012) Transforming growth factor-beta and atherosclerosis: interwoven atherogenic and atheroprotective aspects. Cell Tissue Res 347(1):155–175

    Article  CAS  PubMed  Google Scholar 

  • Travers JG et al (2016) Cardiac fibrosis: the fibroblast awakens. Circ Res 118(6):1021–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Amerongen MJ et al (2008) Bone marrow-derived myofibroblasts contribute functionally to scar formation after myocardial infarction. J Pathol 214(3):377–386

    Article  PubMed  Google Scholar 

  • van Dijk CG et al (2015) The complex mural cell: pericyte function in health and disease. Int J Cardiol 190:75–89

    Article  PubMed  Google Scholar 

  • Volz KS et al (2015) Pericytes are progenitors for coronary artery smooth muscle. Elife 4

    Google Scholar 

  • Wakui S et al (2006) Localization of Ang-1, −2, Tie-2, and VEGF expression at endothelial-pericyte interdigitation in rat angiogenesis. Lab Investig 86(11):1172–1184

    Article  CAS  PubMed  Google Scholar 

  • Wanjare M, Kusuma S, Gerecht S (2013) Perivascular cells in blood vessel regeneration. Biotechnol J 8(4):434–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe N et al (2004) Three-dimensional microstructural abnormality of the coronary capillary network after myocardial reperfusion—comparison between ‘reflow’ and ‘no-reflow’. Circ J 68(9):868–872

    Article  PubMed  Google Scholar 

  • Weiss DR et al (2009) Extensive deendothelialization and thrombogenicity in routinely prepared vein grafts for coronary bypass operations: facts and remedy. Int J Clin Exp Med 2(2):95–113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss RM, Miller JD, Heistad DD (2013) Fibrocalcific aortic valve disease: opportunity to understand disease mechanisms using mouse models. Circ Res 113(2):209–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkler EA, Bell RD, Zlokovic BV (2010) Pericyte-specific expression of PDGF beta receptor in mouse models with normal and deficient PDGF beta receptor signaling. Mol Neurodegener 5:32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Winkler EA, Bell RD, Zlokovic BV (2011) Central nervous system pericytes in health and disease. Nat Neurosci 14(11):1398–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong SP et al (2015) Pericytes, mesenchymal stem cells and their contributions to tissue repair. Pharmacol Ther 151:107–120

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Rementer C, Giachelli CM (2013) Vascular calcification: an update on mechanisms and challenges in treatment. Calcif Tissue Int 93(4):365–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yannarelli G et al (2013) Human umbilical cord perivascular cells exhibit enhanced cardiomyocyte reprogramming and cardiac function after experimental acute myocardial infarction. Cell Transplant 22(9):1651–1666

    Article  PubMed  Google Scholar 

  • Yemisci M et al (2009) Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat Med 15(9):1031–1037

    Article  CAS  PubMed  Google Scholar 

  • Zeng H et al (2016) LPS causes pericyte loss and microvascular dysfunction via disruption of Sirt3/angiopoietins/Tie-2 and HIF-2alpha/Notch3 pathways. Sci Rep 6:20931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Z et al (2016) Induction of initial steps of angiogenic differentiation and maturation of endothelial cells by pericytes in vitro and the role of collagen IV. Histochem Cell Biol 145(5):511–525

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishnu Chintalgattu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, L.L., Chintalgattu, V. (2019). Pericytes in the Heart. In: Birbrair, A. (eds) Pericyte Biology in Different Organs. Advances in Experimental Medicine and Biology, vol 1122. Springer, Cham. https://doi.org/10.1007/978-3-030-11093-2_11

Download citation

Publish with us

Policies and ethics