Skip to main content

Moving and Computing Models: Agents

  • Chapter
  • First Online:
Distributed Computing by Mobile Entities

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11340))

Abstract

This chapter introduces and discusses the existing computational models employed in the literature for studying the feasibility and complexity of computations by mobile agents: computational mobile entities that operate and move in discrete spaces, modeled as graphs.

While almost all models share some fundamental features, making basic common assumptions, their fundamental differences depend on the assumptions made on the capabilities of the agents, in particular on the means of interaction with the environment and of inter-agent communication. Clearly, there are many variations of the models, depending on the assumed level of synchrony, anonymity, persistent memory, and topological knowledge. This Chapter aims to provide an overview of these models and assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although directed graphs may be more natural for certain applications, the problems of agents moving in directed graphs are largely unexplored.

References

  1. Albers, S., Henzinger, M.: Exploring unknown environments. In: Proceedings of 29th ACM Symposium on Theory of Computing (STOC), pp. 416–425 (1997)

    Google Scholar 

  2. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Chapman & Hall, Kluwer (2003)

    MATH  Google Scholar 

  3. Královič, R., Miklík, S.: Periodic data retrieval problem in rings containing a malicious host. In: Patt-Shamir, B., Ekim, T. (eds.) SIROCCO 2010. LNCS, vol. 6058, pp. 157–167. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13284-1_13

    Chapter  Google Scholar 

  4. Balamohan, B., Dobrev, S., Flocchini, P., Santoro, N.: Exploring an unknown dangerous graph with a constant number of tokens. Theor. Comput. Sci. 610, 169–181 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bampas, E., Czyzowicz, J., Gąsieniec, L., Ilcinkas, D., Labourel, A.: Almost optimal asynchronous rendezvous in infinite multidimensional grids. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 297–311. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15763-9_28

    Chapter  Google Scholar 

  6. Bampas, E., Leonardos, N., Markou, E., Pagourtzis, A., Petrolia, M.: Improved periodic data retrieval in asynchronous rings with a faulty host. Theor. Comput. Sci. 608, 231–254 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barrière, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Capture of an intruder by mobile agents. In: Proceedings of 14th ACM Symposium on Parallel Algorithms and Architectures (SPAA), pp. 200–209 (2002)

    Google Scholar 

  8. Barrière, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Can we elect if we cannot compare? In: Proceedings of 15th ACM Symposium on Parallel Algorithms and Architectures (SPAA), pp. 324–332 (2003)

    Google Scholar 

  9. Barrière, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Rendezvous and election of mobile agents: impact of sense of direction. Theor. Comput. Syst. 40(2), 143–162 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Barrière, L., Flocchini, P., Mesa-Barrameda, E., Santoro, N.: Uniform scattering of autonomous mobile robots in a grid. Int. J. Found. Comput. Sci. 22(3), 679–697 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Baston, V., Gal, S.: Rendezvous search when marks are left at the starting points. Naval Res. Logist. 38, 469–494 (1991)

    Article  MATH  Google Scholar 

  12. Bender, M., Fernandez, A., Ron, D., Sahai, A., Vadhan, S.: The power of a pebble: exploring and mapping directed graphs. In: Proceedings of 30th ACM Symposium on Theory of Computing (STOC), pp. 269–287 (1998)

    Google Scholar 

  13. Braun, P., Rossak, W.: Mobile Agents. Morgan Kaufmann, Burlington (2005)

    Google Scholar 

  14. Cabri, G., Leonardi, L., Zambonelli, F.: Mobile-agent coordination models for internet applications. Computer 33(2), 82–89 (2000)

    Article  Google Scholar 

  15. Cai, J., Flocchini, P., Santoro, N.: Network decontamination from a black virus. Int. J. Netw. Comput. 4(1), 151–173 (2014)

    Article  Google Scholar 

  16. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. Int. J. Parallel Emergent Distrib. Syst. 27(5), 387–408 (2012)

    Article  Google Scholar 

  17. Chalopin, J., Das, S., Labourel, A., Markou, E.: Tight bounds for black hole search with scattered agents in synchronous rings. Theor. Comput. Sci. 509, 70–85 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chalopin, J., Das, S., Santoro, N.: Rendezvous of mobile agents in unknown graphs with faulty links. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 108–122. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75142-7_11

    Chapter  Google Scholar 

  19. Chalopin, J., Godard, E., Métivier, Y., Ossamy, R.: Mobile agent algorithms versus message passing algorithms. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 187–201. Springer, Heidelberg (2006). https://doi.org/10.1007/11945529_14

    Chapter  Google Scholar 

  20. Chalopin, J., Godard, E., Naudin, A.: Anonymous graph exploration with binoculars. In: Moses, Y. (ed.) DISC 2015. LNCS, vol. 9363, pp. 107–122. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48653-5_8

    Chapter  Google Scholar 

  21. Cooper, C., Klasing, R., Radzik, T.: Locating and repairing faults in a network with mobile agents. Theor. Comput. Sci. 411(14–15), 1638–1647 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cornejo, A., Kuhn, F.: Deploying wireless networks with beeps. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 148–162. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15763-9_15

    Chapter  Google Scholar 

  23. Czumaj, A., Davies, P.: Communicating with beeps. In: Proceedings of 20th International Conference on Principles of Distributed Systems (OPODIS), pp. 1–16 (2016)

    Google Scholar 

  24. Czyzowicz, J., Gasieniec, L., Kosowski, A., Kranakis, E., Krizanc, D., Taleb, N.: When patrolmen become corrupted: monitoring a graph using faulty mobile robots. Algorithmica 7916(3), 925–940 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Czyzowicz, J., et al.: Search on a line by Byzantinerobots. In: Proceedings of 27th International Symposium onAlgorithms and Computation (ISAAC), pp. 27:1–27:12 (2016)

    Google Scholar 

  26. Czyzowicz, J., Godon, M., Kranakis, E., Labourel, A., Markou, E.: Exploring graphs with time constraints by unreliable collections of mobile robots. In: Tjoa, A.M., Bellatreche, L., Biffl, S., van Leeuwen, J., Wiedermann, J. (eds.) SOFSEM 2018. LNCS, vol. 10706, pp. 381–395. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73117-9_27

    Chapter  Google Scholar 

  27. Czyzowicz, J., Kowalski, D., Markou, E., Pelc, A.: Searching for a black hole in synchronous tree networks. Comb. Probab. Comput. 16, 595–619 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Czyzowicz, J., Pelc, A., Labourel, A.: How to meet asynchronously (almost) everywhere. ACM Trans. Algorithms 8(4), 37:1–37:14 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Barrameda, E.M., Das, S., Santoro, N.: Deployment of asynchronous robotic sensors in unknown orthogonal environments. In: Fekete, S.P. (ed.) ALGOSENSORS 2008. LNCS, vol. 5389, pp. 125–140. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92862-1_11

    Chapter  Google Scholar 

  30. Das, S., Dereniowski, D., Karousatou, C.: Collaborative exploration of trees by energy-constrained mobile robots. Theor. Comput. Syst. 62(5), 1223–1240 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Das, S., Flocchini, P., Kutten, S., Nayak, A., Santoro, N.: Map construction of unknown graphs by multiple agents. Theor. Comput. Sci. 385(1–3), 34–48 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Das, S., Flocchini, P., Nayak, A., Santoro, N.: Effective elections for anonymous mobile agents. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 732–743. Springer, Heidelberg (2006). https://doi.org/10.1007/11940128_73

    Chapter  Google Scholar 

  33. Das, S., Flocchini, P., Santoro, N., Yamashita, M.: Fault-tolerant simulation of message-passing algorithms by mobile agents. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 289–303. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72951-8_23

    Chapter  Google Scholar 

  34. Das, S., Focardi, R., Luccio, F., Markou, E., Squarcina, M.: Gathering of robots in a ring with mobile faults. Theor. Computer Sci. (2018)

    Google Scholar 

  35. Das, S., Luccio, F.L., Markou, E.: Mobile agents rendezvous in spite of a malicious agent. In: Bose, P., Gąsieniec, L.A., Römer, K., Wattenhofer, R. (eds.) ALGOSENSORS 2015. LNCS, vol. 9536, pp. 211–224. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-28472-9_16

    Chapter  Google Scholar 

  36. Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. J. Graph Theor. 32(3), 265–297 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  37. Dessmark, A., Fraigniaud, P., Pelc, A.: Deterministic rendezvous in graphs. Algorithmica 46, 69–96 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Di Luna, G.A., Dobrev, S., Flocchini, P., Santoro, N.: Distributed exploration of dynamic rings. Distribut. Comput. (2018)

    Google Scholar 

  39. Di Luna, G.A., Flocchini, P., Pagli, L., Prencipe, G., Santoro, N., Viglietta, G.: Gathering in dynamic rings. In Proocedings of the 24th International Colloquium Structural Information and Communication Complexity (SIROCCO), pp. 339–355 (2017)

    Google Scholar 

  40. Dieudonné, Y., Pelc, A., Peleg, D.: Gathering despite mischief. ACM Trans. Algorithms 11(1), 1–28 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little memory. J. Algorithms 51(1), 38–64 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Dobrev, S., Flocchini, P., Kralovic, R., Santoro, N.: Exploring an unknown dangerous graph using tokens. Theor. Comput. Sci. 472, 28–45 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Searching for a black hole in arbitrary networks: optimal mobile agents protocols. Distribut. Comput. 19(1), 1–19 (2006)

    Article  MATH  Google Scholar 

  44. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Mobile search for a black hole in an anonymous ring. Algorithmica 48(1), 67–90 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. Dobrev, S., Královič, R., Santoro, N., Shi, W.: Black hole search in asynchronous rings using tokens. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006. LNCS, vol. 3998, pp. 139–150. Springer, Heidelberg (2006). https://doi.org/10.1007/11758471_16

    Chapter  Google Scholar 

  46. Dufoulon, F., Burman, J., Beauquier, J.: Beeping a deterministic time-optimal leader election. In: Proceedings of 32nd International Symposium on DistributedComputing (DISC) (2018)

    Google Scholar 

  47. Erlebach, T., Hoffmann, M., Kammer, F.: On temporal graphexploration. In: Proceedings of the 42nd International Colloquium on Automata, Languages, and Programming (ICALP), pp. 444–455 (2015)

    Chapter  Google Scholar 

  48. Ferreira, A.: Building a reference combinatorial model for MANETs. IEEE Netw. 18(5), 24–29 (2004)

    Article  Google Scholar 

  49. Flocchini, P., Ilcinkas, D., Santoro, N.: Ping pong in dangerous graphs: optimal black hole search with pebbles. Algorithmica 62(3–4), 1006–1033 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  50. Flocchini, P., Mans, B., Santoro, N.: Sense of direction in distributed computing. Theor. Comput. Sci. 291, 29–53 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  51. Flocchini, P., Mans, B., Santoro, N.: On the exploration of time-varying networks. Theor. Comput. Sci. 469, 53–68 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  52. Flocchini, P., Roncato, A., Santoro, N.: Backward consistency and sense of direction in advanced distributed systems. SIAM J. Comput. 32(2), 281–306 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  53. Förster, K.-T., Seidel, J., Wattenhofer, R.: Deterministic leader election in multi-hop beeping networks. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 212–226. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45174-8_15

    Chapter  Google Scholar 

  54. Fraigniaud, P., Gasieniec, L., Kowalski, D., Pelc, A.: Collective tree exploration. Networks 48(3), 166–177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  55. Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by a finite automaton. Theor. Comput. Sci. 345(2–3), 331–344 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  56. Gorain, B., Pelc, A.: Deterministic graph exploration with advice. ACM Trans. Algorithms 15(1), 8 (2018, to appear)

    Article  Google Scholar 

  57. Gray, R., Kotz, D., Nog, S., Rus, D., Cybenko, G.: Mobile agents: the next generation in distributed computing. In: Proceedings of 2nd AIZU International Symposium on Parallel Algorithms/Architecture Synthesis (PAS) (1997)

    Google Scholar 

  58. Harary, F., Gupta, G.: Dynamic graph models. Math. Comp. Model. 25(7), 79–88 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  59. Hsiang, T.-R., Arkin, E.M., Bender, M.A., Fekete, S.P., Mitchell, J.S.B.: Algorithms for rapidly dispersing robot swarms in unknown environments. In: Boissonnat, J.-D., Burdick, J., Goldberg, K., Hutchinson, S. (eds.) Algorithmic Foundations of Robotics V. STAR, vol. 7, pp. 77–93. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-45058-0_6

    Chapter  Google Scholar 

  60. Ilcinkas, D., Wade, A.M.: Exploration of the T-interval-connected dynamic graphs: the case of the ring. Theor. Comput. Syst. 62(5), 1144–1160 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  61. Johansen, D., van Renesse, R., Schneider, F.B.: Operating system support for mobile agents. In: Proceedings of 5th Workshop Hot Topics in Operating Systems (HotOS), pp. 42–45 (1995)

    Google Scholar 

  62. Kranakis, E., Krizanc, D., Markou, E.: Deterministic symmetric rendezvous with tokens in a synchronous torus. Discrete Appl. Math. 159(9), 896–923 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  63. Megiddo, N., Hakimi, S., Garey, M., Johnson, D., Papadimitriou, C.: The complexity of searching a graph. J. ACM 35(1), 18–44 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  64. Nisse, N., Soguet, D.: Graph searching with advice. Theor. Comput. Sci. 410(14), 1307–1318 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  65. Parson, T.: The search number of a connected graph. In: Proceedings of 9th Southeastern Conference on Combinatorics, Graph Theory and Computing, pp. 549–554 (1978)

    Google Scholar 

  66. Rollik, H.A.: Automaten in planaren graphen. Acta Informatica 13(3), 287–298 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  67. Sudo, Y., Baba, D., Nakamura, J., Ooshita, F., Kakugawa, H., Masuzawa, T.: An agent exploration in unknown undirected graphs with whiteboards. In: Proceedings of 3rd Workshop on Reliability, Availability, and Security (WRAS) (2010)

    Google Scholar 

  68. Wall, D.: Messages as active agents. In: Proceedings of 9th ACM Symposium on Principles of Programming Languages (POPL), pp. 549–554 (1978)

    Google Scholar 

  69. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems: the Gaia methodology. ACM Trans. Softw. Eng. Methodol. 12(3), 317–370 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shantanu Das or Nicola Santoro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, S., Santoro, N. (2019). Moving and Computing Models: Agents. In: Flocchini, P., Prencipe, G., Santoro, N. (eds) Distributed Computing by Mobile Entities. Lecture Notes in Computer Science(), vol 11340. Springer, Cham. https://doi.org/10.1007/978-3-030-11072-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11072-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11071-0

  • Online ISBN: 978-3-030-11072-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics