Skip to main content

Advances in Computational Methods for Phylogenetic Networks in the Presence of Hybridization

  • Chapter
  • First Online:
Bioinformatics and Phylogenetics

Part of the book series: Computational Biology ((COBO,volume 29))

Abstract

Phylogenetic networks extend phylogenetic trees to allow for modeling reticulate evolutionary processes such as hybridization. They take the shape of a rooted, directed, acyclic graph, and when parameterized with evolutionary parameters, such as divergence times and population sizes, they form a generative process of molecular sequence evolution. Early work on computational methods for phylogenetic network inference focused exclusively on reticulations and sought networks with the fewest number of reticulations to fit the data. As processes such as incomplete lineage sorting (ILS) could be at play concurrently with hybridization, work in the last decade has shifted to computational approaches for phylogenetic network inference in the presence of ILS. In such a short period, significant advances have been made on developing and implementing such computational approaches. In particular, parsimony, likelihood, and Bayesian methods have been devised for estimating phylogenetic networks and associated parameters using estimated gene trees as data. Use of those inference methods has been augmented with statistical tests for specific hypotheses of hybridization, like the D-statistic. Most recently, Bayesian approaches for inferring phylogenetic networks directly from sequence data were developed and implemented. In this chapter, we survey such advances and discuss model assumptions as well as methods’ strengths and limitations. We also discuss parallel efforts in the population genetics community aimed at inferring similar structures. Finally, we highlight major directions for future research in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this chapter, we do not make a distinction between species, population, or subpopulation. The modeling assumptions and algorithmic techniques underlying all the methods we describe here neither require nor make use of such a distinction.

  2. 2.

    We emphasize hybridization (in eukaryotic species) here since processes such as horizontal gene transfer in microbial organisms result in reticulate evolutionary histories, but the applicability of methods we describe in this chapter has not been investigated or explored in such a domain.

  3. 3.

    We especially thank David Morrison for requesting that we highlight this issue.

References

  1. Abbott, R., Albach, D., Ansell, S., Arntzen, J., Baird, S., Bierne, N., Boughman, J., Brelsford, A., Buerkle, C., Buggs, R., Butlin, R.K., Dieckmann, U., Eroukhmanoff, F., Grill, A., Cahan, S.H., Hermansen, J.S., Hewitt, G., Hudson, A.G., Jiggins, C., Jones, J., Keller, B., Marczewski, T., Mallet, J., Martinez-Rodriguez, P., Möst, M., Mullen, S., Nichols, R., Nolte, A.W., Parisod, C., Pfennig, K., Rice, A.M., Ritchie, M.G., Seifert, B., Smadja, C.M., Stelkens, R., Szymura, J.M., Väinölä, R., Wolf, J.B.W., Zinner, D.: Hybridization and speciation. J. Evolut. Biol. 26(2), 229–246 (2013)

    Article  Google Scholar 

  2. Arnold, M.: Natural Hybridization and Evolution. Oxford University Press (1997)

    Google Scholar 

  3. Barton, N.: The role of hybridization in evolution. Mol. Ecol. 10(3), 551–568 (2001)

    Article  Google Scholar 

  4. Barton, N.H., Hewitt, G.M.: Analysis of hybrid zones. Ann. Rev. Ecol. Syst. 16(1), 113–148 (1985)

    Article  Google Scholar 

  5. Blischak, P.D., Chifman, J., Wolfe, A.D., Kubatko, L.S.: HyDe: a Python package for genome-scale hybridization detection. Syst. Biol. p. syy023 (2018)

    Google Scholar 

  6. Bonhomme, M., Cuartero, S., Blancher, A., Crouau-Roy, B.: Assessing natural introgression in 2 biomedical model species, the rhesus macaque (Macaca mulatta) and the long-tailed macaque (Macaca fascicularis). J. Heredity 100(2), 158–169 (2009)

    Article  Google Scholar 

  7. Bouchard-Côté, A., Sankararaman, S., Jordan, M.I.: Phylogenetic inference via sequential Monte Carlo. Syst. Biol. 61(4), 579–593 (2012). http://dx.doi.org/10.1093/sysbio/syr131

    Article  Google Scholar 

  8. Bouckaert, R., Heled, J., Khnert, D., Vaughan, T., Wu, C.H., Xie, D., Suchard, M.A., Rambaut, A., Drummond, A.J.: BEAST 2: a software platform for Bayesian evolutionary analysis. PLOS Comput. Biol. 10(4), 1–6 (2014). https://doi.org/10.1371/journal.pcbi.1003537

    Article  Google Scholar 

  9. Bryant, D., Moulton, V.: Neighbor-Net: An agglomerative method for the construction of phylogenetic networks. Mol. Biol. Evolut. 21(2), 255–265 (2004). http://dx.doi.org/10.1093/molbev/msh018

    Article  Google Scholar 

  10. Buckland, S.T., Burnham, K.P., Augustin, N.H.: Model selection: an integral part of inference. Biometrics 53(2), 603–618 (1997). http://www.jstor.org/stable/2533961

    Article  MATH  Google Scholar 

  11. Cavalli-Sforza, L.L., Edwards, A.W.: Phylogenetic analysis: models and estimation procedures. Evolution 21(3), 550–570 (1967)

    Article  Google Scholar 

  12. Cavender, J.A., Felsenstein, J.: Invariants of phylogenies in a simple case with discrete states. J. Classification 4(1), 57–71 (1987)

    Article  MATH  Google Scholar 

  13. Chatzou, M., Magis, C., Chang, J.M., Kemena, C., Bussotti, G., Erb, I., Notredame, C.: Multiple sequence alignment modeling: methods and applications. Brief. Bioinform. 17(6), 1009–1023 (2015)

    Article  Google Scholar 

  14. Chifman, J., Kubatko, L.: Quartet inference from SNP data under the coalescent model. Bioinformatics 30(23), 3317–3324 (2014). http://dx.doi.org/10.1093/bioinformatics/btu530

    Article  Google Scholar 

  15. Chor, B., Tuller, T.: Maximum likelihood of evolutionary trees is hard. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P., Waterman, M. (eds.), Research in Computational Molecular Biology. Lecture Notes in Computer Science, vol. 3500, pp. 995–995. Springer, Berlin/Heidelberg (2005)

    Google Scholar 

  16. Clark, A.G., Messer, P.W.: Conundrum of jumbled mosquito genomes. Science 347(6217), 27–28 (2015)

    Article  Google Scholar 

  17. Coop, G., Witonsky, D., Di Rienzo, A., Pritchard, J.K.: Using environmental correlations to identify loci underlying local adaptation. Genetics 185(4), 1411–1423 (2010)

    Article  Google Scholar 

  18. De Queiroz, K.: Species concepts and species delimitation. Syst. Biol. 56(6), 879–886 (2007). https://doi.org/10.1080/10635150701701083

    Article  Google Scholar 

  19. Degnan, J.H., Rosenberg, N.A.: Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol. Evolut. 24(6), 332–340 (2009)

    Article  Google Scholar 

  20. Degnan, J.H., Salter, L.A.: Gene tree distributions under the coalescent process. Evolution 59, 24–37 (2005)

    Article  Google Scholar 

  21. Du, P., Nakhleh, L.: Species tree and reconciliation estimation under a duplication-loss-coalescence model. In: The 9th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics (ACM-BCB), pp. 376–385. Association for Computing Machinery (ACM) (2018)

    Google Scholar 

  22. Durand, E.Y., Patterson, N., Reich, D., Slatkin, M.: Testing for ancient admixture between closely related populations. Mol. Biol. Evolut. 28(8), 2239–2252 (2011). http://mbe.oxfordjournals.org/content/28/8/2239.abstract

    Article  Google Scholar 

  23. Elgvin, T.O., Trier, C.N., Tørresen, O.K., Hagen, I.J., Lien, S., Nederbragt, A.J., Ravinet, M., Jensen, H., Sætre, G.P.: The genomic mosaicism of hybrid speciation. Sci. Adv. 3(6), e1602,996 (2017)

    Article  Google Scholar 

  24. Elworth, R.L., Allen, C., Benedict, T., Dulworth, P., Nakhleh, L.: ALPHA: a toolkit for automated local phylogenomic analyses. Bioinformatics 1, 3 (2018)

    Google Scholar 

  25. Elworth, R.L., Allen, C., Benedict, T., Dulworth, P., Nakhleh, L.: \({D}_{GEN}\): a test statistic for detection of general introgression scenarios. In: Proceedings of the 18th Workshop on Algorithms in Bioinformatics (WABI) (2018)

    Google Scholar 

  26. Felsenstein, J.: Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evolut. 17(6), 368–376 (1981)

    Article  Google Scholar 

  27. Felsenstein, J.: Inferring Phylogenies. Sinauer, Sunderland, MA (2004)

    Google Scholar 

  28. Fernández-Mazuecos, M., Mellers, G., Vigalondo, B., Sáez, L., Vargas, P., Glover, B.J.: Resolving recent plant radiations: power and robustness of genotyping-by-sequencing. Syst. Biol. 67(2), 250–268 (2018). http://dx.doi.org/10.1093/sysbio/syx062

    Article  Google Scholar 

  29. Folk, R.A., Soltis, P.S., Soltis, D.E., Guralnick, R.: New prospects in the detection and comparative analysis of hybridization in the tree of life. Am. J. Botany 105(3), 364–375 (2018)

    Article  Google Scholar 

  30. Fontaine, M.C., Pease, J.B., Steele, A., Waterhouse, R.M., Neafsey, D.E., Sharakhov, I.V., Jiang, X., Hall, A.B., Catteruccia, F., Kakani, E., Mitchell, S.N., Wu, Y.C., Smith, H.A., Love, R.R., Lawniczak, M.K., Slotman, M.A., Emrich, S.J., Hahn, M.W., Besansky, N.J.: Extensive introgression in a malaria vector species complex revealed by phylogenomics. Science 347(6217), 1258,524 (2015)

    Article  Google Scholar 

  31. Francis, A.R., Steel, M.: Which phylogenetic networks are merely trees with additional arcs? Syst. Biol. 64(5), 768–777 (2015)

    Article  Google Scholar 

  32. Gascuel, O.: Mathematics of Evolution and Phylogeny. Oxford University Press, Oxford (2005)

    Google Scholar 

  33. Gelman, A., Meng, X.L., Stern, H.: Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica 6(4), 733–760 (1996). http://www.jstor.org/stable/24306036

  34. Gernhard, T.: The conditioned reconstructed process. J. Theoret. Biol. 253(4), 769–778 (2008). https://doi.org/10.1016/j.jtbi.2008.04.005

    Article  MathSciNet  MATH  Google Scholar 

  35. Good, J.M.: Reduced representation methods for subgenomic enrichment and next-generation sequencing. In: Orgogozo, V., Rockman, M.V. (eds.) Molecular Methods for Evolutionary Genetics, pp. 85–103. Humana Press, Totowa, NJ (2011)

    Google Scholar 

  36. Green, P.J.: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82(4), 711–732 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  37. Green, R.E., Krause, J., Briggs, A.W., Maricic, T., Stenzel, U., Kircher, M., Patterson, N., Li, H., Zhai, W., Fritz, M.H.Y., Hansen, N.F., Durand, E.Y., Malaspinas, A.S., Jensen, J.D., Marques-Bonet, T., Alkan, C., Prafer, K., Meyer, M., Burbano, H.A., Good, J.M., Schultz, R., Aximu-Petri, A., Butthof, A., Hober, B., Hoffner, B., Siegemund, M., Weihmann, A., Nusbaum, C., Lander, E.S., Russ, C., Novod, N., Affourtit, J., Egholm, M., Verna, C., Rudan, P., Brajkovic, D., Kucan, O., Guic, I., Doronichev, V.B., Golovanova, L.V., Lalueza-Fox, C., de la Rasilla, M., Fortea, J., Rosas, A., Schmitz, R.W., Johnson, P.L.F., Eichler, E.E., Falush, D., Birney, E., Mullikin, J.C., Slatkin, M., Nielsen, R., Kelso, J., Lachmann, M., Reich, D., Paabo, S.: A draft sequence of the Neandertal genome. Science 328(5979), 710–722 (2010). http://www.sciencemag.org/content/328/5979/710.abstract

    Article  Google Scholar 

  38. Griffiths, R., Marjoram, P.: Ancestral inference from samples of DNA sequences with recombination. J. Comput. Biol. 3, 479–502 (1996)

    Article  Google Scholar 

  39. Grummer, J.A., Morando, M.M., Avila, L.J., Sites, J.W., Leaché, A.D.: Phylogenomic evidence for a recent and rapid radiation of lizards in the Patagonian Liolaemus fitzingerii species group. Mol. Phylogenet. Evolut. (2018). https://doi.org/10.1016/j.ympev.2018.03.023, http://www.sciencedirect.com/science/article/pii/S1055790317307303

    Article  Google Scholar 

  40. Gusfield, D.: ReCombinatorics: the algorithmics of ancestral recombination graphs and explicit phylogenetic networks. MIT Press (2014)

    Google Scholar 

  41. Hagen, O., Hartmann, K., Steel, M., Stadler, T.: Age-dependent speciation can explain the shape of empirical phylogenies. Syst. Biol. 64(3), 432–440 (2015). http://dx.doi.org/10.1093/sysbio/syv001

    Article  Google Scholar 

  42. Hahn, M.W.: Toward a selection theory of molecular evolution. Evolution 62(2), 255–265 (2008). https://doi.org/10.1111/j.1558-5646.2007.00308.x

    Article  Google Scholar 

  43. Harrison, R.G., Larson, E.L.: Hybridization, introgression, and the nature of species boundaries. J. Heredity 105(S1), 795–809 (2014)

    Article  Google Scholar 

  44. Hejase, H.A., Liu, K.J.: A scalability study of phylogenetic network inference methods using empirical datasets and simulations involving a single reticulation. BMC Bioinform. 17(1), 422 (2016). https://doi.org/10.1186/s12859-016-1277-1

  45. Hey, J.: Isolation with migration models for more than two populations. Mol. Biol. Evolut. 27(4), 905–920 (2010). http://dx.doi.org/10.1093/molbev/msp296

    Article  Google Scholar 

  46. Hudson, R.R.: Gene genealogies and the coalescent process. In: Futuyma, D, Antonovics, J. (eds.) Oxford Surveys in Evolutionary Biology, vol. 7, pp. 1–44. Oxford University Press (1991)

    Google Scholar 

  47. Hudson, R.R.: Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics 18, 337–338 (2002)

    Article  Google Scholar 

  48. Huson, D.: SplitsTree: a program for analyzing and visualizing evolutionary data. Bioinformatics 14(1), 68–73 (1998)

    Article  Google Scholar 

  49. Huson, D., Richter, D., Rausch, C., Dezulian, T., Franz, M., Rupp, R.: Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinform. 8(1), 460 (2007)

    Article  Google Scholar 

  50. Jarvis, E.D., Mirarab, S., Aberer, A.J., Li, B., Houde, P., Li, C., Ho, S.Y.W., Faircloth, B.C., Nabholz, B., Howard, J.T., Suh, A., Weber, C.C., da Fonseca, R.R., Li, J., Zhang, F., Li, H., Zhou, L., Narula, N., Liu, L., Ganapathy, G., Boussau, B., Bayzid, M.S., Zavidovych, V., Subramanian, S., Gabaldón, T., Capella-Gutiérrez, S., Huerta-Cepas, J., Rekepalli, B., Munch, K., Schierup, M., Lindow, B., Warren, W.C., Ray, D., Green, R.E., Bruford, M.W., Zhan, X., Dixon, A., Li, S., Li, N., Huang, Y., Derryberry, E.P., Bertelsen, M.F., Sheldon, F.H., Brumfield, R.T., Mello, C.V., Lovell, P.V., Wirthlin, M., Schneider, M.P.C., Prosdocimi, F., Samaniego, J.A., Velazquez, A.M.V., Alfaro-Núñez, A., Campos, P.F., Petersen, B., Sicheritz-Ponten, T., Pas, A., Bailey, T., Scofield, P., Bunce, M., Lambert, D.M., Zhou, Q., Perelman, P., Driskell, A.C., Shapiro, B., Xiong, Z., Zeng, Y., Liu, S., Li, Z., Liu, B., Wu, K., Xiao, J., Yinqi, X., Zheng, Q., Zhang, Y., Yang, H., Wang, J., Smeds, L., Rheindt, F.E., Braun, M., Fjeldsa, J., Orlando, L., Barker, F.K., Jønsson, K.A., Johnson, W., Koepfli, K.P., O’Brien, S., Haussler, D., Ryder, O.A., Rahbek, C., Willerslev, E., Graves, G.R., Glenn, T.C., McCormack, J., Burt, D., Ellegren, H., Alström, P., Edwards, S.V., Stamatakis, A., Mindell, D.P., Cracraft, J., Braun, E.L., Warnow, T., Jun, W., Gilbert, M.T.P., Zhang, G.: Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346(6215), 1320–1331 (2014)

    Article  Google Scholar 

  51. Jin, G., Nakhleh, L., Snir, S., Tuller, T.: Efficient parsimony-based methods for phylogenetic network reconstruction. Bioinformatics 23, e123–e128 (2006). Proceedings of the European Conference on Computational Biology (ECCB 06)

    Article  Google Scholar 

  52. Jin, G., Nakhleh, L., Snir, S., Tuller, T.: Maximum likelihood of phylogenetic networks. Bioinformatics 22(21), 2604–2611 (2006)

    Article  Google Scholar 

  53. Jin, G., Nakhleh, L., Snir, S., Tuller, T.: Inferring phylogenetic networks by the maximum parsimony criterion: a case study. Mol. Biol. Evolut. 24(1), 324–337 (2007)

    Article  Google Scholar 

  54. Jin, G., Nakhleh, L., Snir, S., Tuller, T.: A new linear-time heuristic algorithm for computing the parsimony score of phylogenetic networks: theoretical bounds and empirical performance. In: Mandoiu, I., Zelikovsky, A. (eds.) Proceedings of the International Symposium on Bioinformatics Research and Applications. Lecture Notes in Bioinformatics, vol. 4463, pp. 61–72 (2007)

    Google Scholar 

  55. Jin, G., Nakhleh, L., Snir, S., Tuller, T.: Parsimony score of phylogenetic networks: hardness results and a linear-time heuristic. IEEE/ACM Trans. Comput. Biol. Bioinform. 6(3), 495–505 (2009)

    Article  Google Scholar 

  56. Kamneva, O.K., Rosenberg, N.A.: Simulation-based evaluation of hybridization network reconstruction methods in the presence of incomplete lineage sorting. Evolut. Bioinform. 13, 1176934317691,935 (2017)

    Article  Google Scholar 

  57. Kanj, I., Nakhleh, L., Than, C., Xia, G.: Seeing the trees and their branches in the network is hard. Theoret. Comput. Sci. 401, 153–164 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  58. Kanj, I., Nakhleh, L., Xia, G.: The compatibility of binary characters on phylogenetic networks: complexity and parameterized algorithms. Algorithmica 51, 99–128 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  59. Kubatko, L., Chifman, J.: An invariants-based method for efficient identification of hybrid species from large-scale genomic data. bioRxiv, p. 034348 (2015)

    Google Scholar 

  60. Kubatko, L.S.: Identifying hybridization events in the presence of coalescence via model selection. Syst. Biol. 58(5), 478–488 (2009)

    Article  Google Scholar 

  61. Kumar, V., Lammers, F., Bidon, T., Pfenninger, M., Kolter, L., Nilsson, M.A., Janke, A.: The evolutionary history of bears is characterized by gene flow across species. Sci. Rep. 7, 46,487 (2017)

    Google Scholar 

  62. Lake, J.A.: A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol. Biol. Evolution 4(2), 167–191 (1987)

    Google Scholar 

  63. Lipson, M., Loh, P.R., Levin, A., Reich, D., Patterson, N., Berger, B.: Efficient moment-based inference of admixture parameters and sources of gene flow. Mol. Biol. Evolut. 30(8), 1788–1802 (2013). http://dx.doi.org/10.1093/molbev/mst099

    Article  Google Scholar 

  64. Liu, K., Steinberg, E., Yozzo, A., Song, Y., Kohn, M., Nakhleh, L.: Interspecific introgressive origin of genomic diversity in the house mouse. Proc. Nat. Acad. Sci. 112(1), 196–201 (2015)

    Article  Google Scholar 

  65. Liu, L., Xi, Z., Wu, S., Davis, C.C., Edwards, S.V.: Estimating phylogenetic trees from genome-scale data. Ann. New York Acad. Sci. 1360(1), 36–53 (2015)

    Article  Google Scholar 

  66. Liu, L., Yu, L., Edwards, S.V.: A maximum pseudo-likelihood approach for estimating species trees under the coalescent model. BMC Evolut. Biol. 10(1), 302 (2010). https://doi.org/10.1186/1471-2148-10-302

    Article  Google Scholar 

  67. Liu, L., Yu, L.L., Kubatko, L., Pearl, D.K., Edwards, S.V.: Coalescent methods for estimating phylogenetic trees. Mol. Phylogenet. Evol. 53, 320–328 (2009)

    Article  Google Scholar 

  68. Long, J.C.: The genetic structure of admixed populations. Genetics 127, 417–428 (1991)

    Google Scholar 

  69. Maddison, W.: Gene trees in species trees. Syst. Biol. 46(3), 523–536 (1997)

    Article  Google Scholar 

  70. Maddison, W.P., Knowles, L.L.: Inferring phylogeny despite incomplete lineage sorting. Syst. Biol. 55, 21–30 (2006)

    Article  Google Scholar 

  71. Mallet, J.: Hybridization as an invasion of the genome. TREE 20(5), 229–237 (2005)

    Google Scholar 

  72. Mallet, J.: Hybrid speciation. Nature 446, 279–283 (2007)

    Article  Google Scholar 

  73. Mallet, J., Besansky, N., Hahn, M.W.: How reticulated are species? BioEssays 38(2), 140–149 (2016)

    Article  Google Scholar 

  74. Marcussen, T., Sandve, S.R., Heier, L., Spannagl, M., Pfeifer, M.: The international wheat genome sequencing consortium, Jakobsen, K.S., Wulff, B.B.H., Steuernagel, B., Mayer, K.F.X., Olsen, O.A., Ancient hybridizations among the ancestral genomes of bread wheat. Science 345(6194), 1250,092 (2014)

    Google Scholar 

  75. Mirarab, S., Reaz, R., Bayzid, M.S., Zimmermann, T., Swenson, M.S., Warnow, T.: ASTRAL: genome-scale coalescent-based species tree estimation. Bioinformatics 30(17), i541–i548 (2014). http://dx.doi.org/10.1093/bioinformatics/btu462

    Article  Google Scholar 

  76. Mueller, N.F., Ogilvie, H.A., Zhang, C., Drummond, A.J., Stadler, T.: Inference of species histories in the presence of gene flow. bioRxiv (2018). https://doi.org/10.1101/348391, https://www.biorxiv.org/content/early/2018/06/17/348391

  77. Nakhleh, L.: Computational approaches to species phylogeny inference and gene tree reconciliation. Trends Ecol. Evolut. 28(12), 719–728 (2013)

    Article  Google Scholar 

  78. Nakhleh, L., Jin, G., Zhao, F., Mellor-Crummey, J.: Reconstructing phylogenetic networks using maximum parsimony. In: Proceedings of the 2005 IEEE Computational Systems Bioinformatics Conference (CSB2005), pp. 93–102 (2005)

    Google Scholar 

  79. Nakhleh, L., Ringe, D.A., Warnow, T.: Perfect phylogenetic networks: a new methodology for reconstructing the evolutionary history of natural languages. Language 81(2), 382–420 (2005)

    Article  Google Scholar 

  80. Nakhleh, L., Sun, J., Warnow, T., Linder, C.R., Moret, B.M., Tholse, A.: Towards the development of computational tools for evaluating phylogenetic network reconstruction methods. In: Biocomputing 2003, pp. 315–326. World Scientific (2002)

    Google Scholar 

  81. Nichio, B.T., Marchaukoski, J.N., Raittz, R.T.: New tools in orthology analysis: a brief review of promising perspectives. Front. Genet. 8, 165 (2017)

    Article  Google Scholar 

  82. Nicholson, G., Smith, A.V., Jónsson, F., Gústafsson, Ó., Stefánsson, K., Donnelly, P.: Assessing population differentiation and isolation from single-nucleotide polymorphism data. J. R. Stat. Soc. Series B (Stat. Method.) 64(4), 695–715 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  83. Ogilvie, H.A., Bouckaert, R.R., Drummond, A.J.: StarBEAST2 brings faster species tree inference and accurate estimates of substitution rates. Mol. Biol. Evolut. 34(8), 2101–2114 (2017). http://dx.doi.org/10.1093/molbev/msx126

    Article  Google Scholar 

  84. Ogilvie, H.A., Heled, J., Xie, D., Drummond, A.J.: Computationalperformanceand statistical accuracy of *BEAST and comparisons with other methods. Syst. Biol. 65(3), 381–396 (2016). https://doi.org/10.1093/sysbio/syv118, http://sysbio.oxfordjournals.org/content/65/3/381.abstract

    Article  Google Scholar 

  85. Osada, N., Uno, Y., Mineta, K., Kameoka, Y., Takahashi, I., Terao, K.: Ancient genome-wide admixture extends beyond the current hybrid zone between Macaca fascicularis and M. mulatta. Mol. Ecol. 19(14), 2884–2895 (2010)

    Article  Google Scholar 

  86. Park, H., Nakhleh, L.: MURPAR: A fast heuristic for inferring parsimonious phylogenetic networks from multiple gene trees. In: Proceedings of the International Symposium on Bioinformatics Research and Applications (ISBRA 12). Lecture Notes in Bioinformatics, vol. 7292, pp. 213–224 (2012)

    Chapter  Google Scholar 

  87. Pease, J.B., Haak, D.C., Hahn, M.W., Moyle, L.C.: Phylogenomics reveals three sources of adaptive variation during a rapid radiation. PLoS Biol. 14(2), e1002,379 (2016)

    Article  Google Scholar 

  88. Pease, J.B., Hahn, M.W.: Detection and polarization of introgression in a five-taxon phylogeny. Syst. Biol. 64(4), 651–662 (2015)

    Article  Google Scholar 

  89. Peter, B.M.: Admixture, population structure, and F-statistics. Genetics 202(4), 1485–1501 (2016)

    Article  Google Scholar 

  90. Pickrell, J.K., Pritchard, J.K.: Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8(11), e1002,967 (2012)

    Article  Google Scholar 

  91. Racimo, F., Sankararaman, S., Nielsen, R., Huerta-Sánchez, E.: Evidence for archaic adaptive introgression in humans. Nat. Rev. Genet. 16(6), 359–371 (2015)

    Article  Google Scholar 

  92. Rambaut, A., Grassly, N.C.: Seq-gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. Comp. Appl. Biosci. 13, 235–238 (1997)

    Google Scholar 

  93. Rannala, B., Yang, Z.: Efficient Bayesian species tree inference under the multispecies coalescent. Syst. Biol. 66(5), 823–842 (2017). http://dx.doi.org/10.1093/sysbio/syw119

  94. Rasmussen, M.D., Hubisz, M.J., Gronau, I., Siepel, A.: Genome-wide inference of ancestral recombination graphs. PLoS Genet. 10(5), e1004,342 (2014)

    Article  Google Scholar 

  95. Rasmussen, M.D., Kellis, M.: Unified modeling of gene duplication, loss, and coalescence using a locus tree. Gen. Res. 22(4), 755–765 (2012). https://doi.org/10.1101/gr.123901.111, http://genome.cshlp.org/content/22/4/755.abstract

    Article  Google Scholar 

  96. Rieseberg, L.H.: Hybrid origins of plant species. Ann. Rev. Ecol. Syst. 28, 359–389 (1997)

    Article  Google Scholar 

  97. Roch, S.: A short proof that phylogenetic tree reconstruction by maximum likelihood is hard. IEEE Trans. Comput. Biol. Bioinf. 3(1), 92–94 (2006)

    Article  Google Scholar 

  98. Scornavacca, C., Galtier, N.: Incomplete lineage sorting in mammalian phylogenomics. Syst. Biol. 66(1), 112–120 (2017). http://dx.doi.org/10.1093/sysbio/syw082

  99. Semple, C., Steel, M.: Phylogenetics. Oxford Series in Mathematics and its Applications (2004)

    Google Scholar 

  100. Simmons, M.P., Gatesy, J.: Coalescence versus concatenation: sophisticated analyses versus first principles applied to rooting the angiosperms. Mol. Phylogenet. Evolut. 91, 98–122 (2015). https://doi.org/10.1016/j.ympev.2015.05.011, http://www.sciencedirect.com/science/article/pii/S1055790315001487

    Article  Google Scholar 

  101. Solís-Lemus, C., Ané, C.: Inferring phylogenetic networks with maximum pseudolikelihood under incomplete lineage sorting. PLoS Genet. 12(3), e1005,896 (2016)

    Article  Google Scholar 

  102. Solís-Lemus, C., Bastide, P., Ané, C.: PhyloNetworks: a package for phylogenetic networks. Mol. Biol. Evolut. 34(12), 3292–3298 (2017). http://dx.doi.org/10.1093/molbev/msx235

    Article  Google Scholar 

  103. Solís-Lemus, C., Yang, M., Ané, C.: Inconsistency of species-tree methods under gene flow. Syst. Biol. (2016). https://doi.org/10.1093/sysbio/syw030

    Article  Google Scholar 

  104. Song, Y., Endepols, S., Klemann, N., Richter, D., Matuschka, F.R., Shih, C.H., Nachman, M.W., Kohn, M.H.: Adaptive introgression of anticoagulant rodent poison resistance by hybridization between old world mice. Curr. Biol. 21(15), 1296–1301 (2011). https://doi.org/10.1016/j.cub.2011.06.043, http://www.sciencedirect.com/science/article/pii/S0960982211007160

    Article  Google Scholar 

  105. Stadler, T.: Sampling-through-time in birth-death trees. J. Theoret. Biol. 267(3), 396–404 (2010). https://doi.org/10.1016/j.jtbi.2010.09.010, http://www.sciencedirect.com/science/article/pii/S0022519310004765

    Article  MathSciNet  MATH  Google Scholar 

  106. Stamatakis, A.: RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21), 2688–2690 (2006)

    Article  Google Scholar 

  107. Steel, M.: Phylogeny: discrete and random processes in evolution. SIAM (2016)

    Google Scholar 

  108. Stevison, L., Kohn, M.: Divergence population genetic analysis of hybridization between rhesus and cynomolgus macaques. Mol. Ecol. 18(11), 2457–2475 (2009)

    Article  Google Scholar 

  109. Than, C., Nakhleh, L.: Species tree inference by minimizing deep coalescences. PLoS Comput. Biol. 5(9), e1000,501 (2009)

    Article  MathSciNet  Google Scholar 

  110. Than, C., Ruths, D., Nakhleh, L.: PhyloNet: a software package for analyzing and reconstructing reticulate evolutionary relationships. BMC Bioinform. 9(1), 322 (2008)

    Article  Google Scholar 

  111. The Heliconious Genome Consortium: Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487(7405), 94–98 (2012). http://dx.doi.org/10.1038/nature11041

  112. Van Iersel, L., Kelk, S., Rupp, R., Huson, D.: Phylogenetic networks do not need to be complex: using fewer reticulations to represent conflicting clusters. Bioinformatics 26(12), i124–i131 (2010)

    Article  Google Scholar 

  113. Wang, L., Zhang, K., Zhang, L.: Perfect phylogenetic networks with recombination. In: Proceedings of the 2001 ACM Symposium on Applied Computing, SAC ’01, pp. 46–50. ACM, New York, NY, USA (2001). http://doi.acm.org/10.1145/372202.372271

  114. Warnow, T.: Computational phylogenetics: an introduction to designing methods for phylogeny estimation. Cambridge University Press (2017)

    Google Scholar 

  115. Waterhouse, S.R., MacKay, D., Robinson, A.J.: Bayesian methods for mixtures of experts. In: Advances in Neural Information Processing Systems, pp. 351–357 (1996)

    Google Scholar 

  116. Wen, D., Nakhleh, L.: Co-estimating reticulate phylogenies and gene trees from multi-locus sequence data. Syst. Biol. 67(3), 439–457 (2018)

    Article  Google Scholar 

  117. Wen, D., Yu, Y., Hahn, M., Nakhleh, L.: Reticulate evolutionary history and extensive introgression in mosquito species revealed by phylogenetic network analysis. Mol.Ecol. 25, 2361–2372 (2016)

    Article  Google Scholar 

  118. Wen, D., Yu, Y., Nakhleh, L.: Bayesian inference of reticulate phylogenies under the multispecies network coalescent. PLoS Genet. 12(5), e1006,006 (2016)

    Article  Google Scholar 

  119. Wen, D., Yu, Y., Zhu, J., Nakhleh, L.: Inferring phylogenetic networks using PhyloNet. Syst. Biol. 67(4), 735–740 (2018)

    Article  Google Scholar 

  120. Wu, Y.: Close lower and upper bounds for the minimum reticulate network of multiple phylogenetic trees. Bioinformatics 26(12), i140–i148 (2010)

    Article  Google Scholar 

  121. Wu, Y.: An algorithm for constructing parsimonious hybridization networks with multiple phylogenetic trees. J. Comput. Biol. 20(10), 792–804 (2013)

    Article  MathSciNet  Google Scholar 

  122. Yu, Y., Barnett, R., Nakhleh, L.: Parsimonious inference of hybridization in the presence of incomplete lineage sorting. Syst. Biol. 62(5), 738–751 (2013)

    Article  Google Scholar 

  123. Yu, Y., Degnan, J., Nakhleh, L.: The probability of a gene tree topology within a phylogenetic network with applications to hybridization detection. PLoS Genet. 8, e1002,660 (2012)

    Article  Google Scholar 

  124. Yu, Y., Dong, J., Liu, K., Nakhleh, L.: Maximum likelihood inference of reticulate evolutionary histories. Proc. Nat. Acad. Sci. 111(46), 16,448–6453 (2014)

    Article  Google Scholar 

  125. Yu, Y., Nakhleh, L.: A maximum pseudo-likelihood approach for phylogenetic networks. BMC Genom. 16, S10 (2015)

    Article  Google Scholar 

  126. Yu, Y., Ristic, N., Nakhleh, L.: Fast algorithms and heuristics for phylogenomics under ILS and hybridization. BMC Bioinform. 14(Suppl 15), S6 (2013)

    Article  Google Scholar 

  127. Yu, Y., Than, C., Degnan, J., Nakhleh, L.: Coalescent histories on phylogenetic networks and detection of hybridization despite incomplete lineage sorting. Syst. Biol. 60(2), 138–149 (2011)

    Article  Google Scholar 

  128. Yu, Y., Warnow, T., Nakhleh, L.: Algorithms for mdc-based multi-locus phylogeny inference: beyond rooted binary gene trees on single alleles. J. Comput. Biol. 18(11), 1543–1559 (2011)

    Article  MathSciNet  Google Scholar 

  129. Yule, G.U.: A mathematical theory of evolution based on the conclusions of Dr. J.C. Willis, F.R.S. Phil. Trans. R. Soc. Lond. B 213, 21–87 (1924)

    Google Scholar 

  130. Zhang, B., Wu, Y.C.: Coestimation of gene trees and reconciliations under a duplication-loss-coalescence model. In: Cai, Z., Daescu, O., Li, M. (eds.) Bioinformatics Research and Applications, pp. 196–210. Springer International Publishing, Cham (2017)

    Chapter  Google Scholar 

  131. Zhang, C., Ogilvie, H.A., Drummond, A.J., Stadler, T.: Bayesian inference of species networks from multilocus sequence data. Mol. Biol. Evolut. 35(2), 504–517 (2018). http://dx.doi.org/10.1093/molbev/msx307

    Article  Google Scholar 

  132. Zhang, L.: On tree-based phylogenetic networks. J. Comput. Biol. 23(7), 553–565 (2016)

    Article  MathSciNet  Google Scholar 

  133. Zhang, W., Dasmahapatra, K.K., Mallet, J., Moreira, G.R., Kronforst, M.R.: Genome-wide introgression among distantly related Heliconius butterfly species. Genome Biol. 17, 25 (2016)

    Article  Google Scholar 

  134. Zhu, J., Nakhleh, L.: Inference of species phylogenies from bi-allelic markers using pseudo-likelihood. Bioinformatics 34, i376–i385 (2018). https://doi.org/10.1093/bioinformatics/bty295

    Article  Google Scholar 

  135. Zhu, J., Wen, D., Yu, Y., Meudt, H.M., Nakhleh, L.: Bayesian inference of phylogenetic networks from bi-allelic genetic markers. PLOS Comput. Biol. 14(1), 1–32 (2018). https://doi.org/10.1371/journal.pcbi.1005932

    Article  Google Scholar 

  136. Zhu, J., Yu, Y., Nakhleh, L.: In the light of deep coalescence: revisiting trees within networks. BMC Bioinform. 17(14), 415 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

Luay Nakhleh started working on phylogenetic networks in 2002 in a close collaboration with Tandy Warnow, Bernard M. E. Moret, and C. Randal Linder. At the time, their focus was on phylogenetic networks in terms of displaying trees. This focus led to work on the inference of smallest phylogenetic networks that display a given set of trees, as well as on comparing networks in terms of their displayed trees. While the approaches pursued at the time were basic, they were foundational in terms of pursuing more sophisticated models and approaches by Nakhleh and his group. Therefore, we would like to acknowledge the role that Bernard played in the early days of (explicit) phylogenetic networks.

The authors would also like to acknowledge James Mallet, Craig Moritz, David Morrison, and Mike Steel for extensive discussions and detailed comments that helped us significantly improve this chapter. The authors thank Matthew Hahn and Kelley Harris for their discussion of the definition of phylogenetic invariant methods, and Dingqiao Wen for the results in Sect. 13.6.3.

This work was partially supported by NSF grants DBI-1355998, CCF-1302179, CCF-1514177, CCF-1800723, and DMS-1547433.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luay Nakhleh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elworth, R.A.L., Ogilvie, H.A., Zhu, J., Nakhleh, L. (2019). Advances in Computational Methods for Phylogenetic Networks in the Presence of Hybridization. In: Warnow, T. (eds) Bioinformatics and Phylogenetics. Computational Biology, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-030-10837-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10837-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10836-6

  • Online ISBN: 978-3-030-10837-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics