Skip to main content

Plants: Unitary Organisms Emerging From Integration and Self-organization of Modules

  • Chapter
  • First Online:
Emergence and Modularity in Life Sciences

Abstract

The organs roots, stems and leaves of plants have evolved under the challenges of the terrestrial environment where they are firmly rooted. Emergence of plants as unitary integrated organisms occurs by integration of these parts, organs or modules. Below this scaling level of morphology and the organs, there are modules on finer scaling levels, tissues at the level of anatomy, organelles and compartments at the level of cell biology, macromolecules at the molecular level and so on. Modules are connected and integrated forming the knots in networks. Networks at a finer scale can integrate, condense and self-organize to form knots in networks at the next coarser scale. In this way, hierarchies of networks are built up leading to the emergence of whole plants. Requirements for the integration are (i) signals carrying information, (ii) receptors for the signals, (iii) transduction of signals within systems and networks, (iv) cross-talk between different types of signals by their translation into each other and (v) configuration of information as instruction for reactions. Integration is organized during development where tight structural and functional correlations are built up under the systemic control of development. Self-organization uses both correlative inhibition and correlative stimulation, with homoiogenetic induction of self-resemblance and heterogenetic induction of unlike-self, respectively. Examples of integration are source-sink relations of water, nutrients and photosynthetic products, induction of flowering, orientation in space under gravity and light, environmental relations under herbivory and salinity. Plants are unitary organisms without a neuronal system. The whole is more than the sum of its parts (Aristotle 384–322 BC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th ed. Garland Science, Taylor and Francis Books

    Google Scholar 

  • Aloni R, Langhans M, Aloni E, Ullrich CI (2004) Role of cytokinin in the regulation of root gravitropism. Planta 220:177–182

    Article  CAS  PubMed  Google Scholar 

  • Bano A, Dörffling K, Bettin D, Hahn H (1993) Abscisic acid and cytokinins as possible root-to-shoot signals in xylem sap of rice plants in drying soil. Aust J Plant Physiol 20:109–115

    CAS  Google Scholar 

  • Baluška F, Ninkovic V (2010) Plant communication from an ecological perspective. Springer, Berlin

    Book  Google Scholar 

  • Beck E (2019) Ecology: ecosystems and biodiversity. In: Wegner LH, Lüttge U (eds) Emergence and modularity in life science. Springer, Heidelberg pp 195–213

    Google Scholar 

  • Behrens HM, Gradmann D, Sievers A (1985) Membrane potential responses following gravistimulation in roots of Lepidium sativum L. Planta 163:463–472

    Article  CAS  PubMed  Google Scholar 

  • Benková E, Michniewicz M, Sauer M, Teichmann T, Seiferotová D, Jürgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602

    Article  PubMed  Google Scholar 

  • BenZioni A, Vaadia Y, Lips SH (1971) Nitrate uptake by roots as regulated by nitrate reduction products of the shoot. Physiol Plant 24:288–290

    Article  CAS  Google Scholar 

  • Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) Nature 433:39–44

    Article  CAS  PubMed  Google Scholar 

  • Bolker JA (2000) Modularity in development and why it matters to evo-devo. Am Zool 4:770–776

    Google Scholar 

  • Brauner L, Bünning E (1930) Geoelektrischer Effekt und Elektrotropismus. Ber Dtsch Bot Ges 48:470–476

    Google Scholar 

  • Bruce TJA (2010) Exploiting plant signals in sustainable agriculture. In: Baluška F, Ninkovic V (eds) Plant communication from an ecological perspective. Springer, Berlin Heidelberg, pp 215–227

    Chapter  Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL (2000) Biochemistry and molecular biology of plants. Amer Soc Plant Physiol, Rockville, Maryland

    Google Scholar 

  • Cermak J, Matyssek R, Kucera J (1993) Rapid response of large, drought–stressed beech trees to irrigation. Tree Physiol 12:281–290

    Article  CAS  PubMed  Google Scholar 

  • Clarkson DT, Smith FW, Vanden Berg PJ (1983) Regulation of sulphate transport in a tropical legume, Macroptilium atropurpureum, cv. Siratro. J Exp Bot 34:1463–1483

    Article  CAS  Google Scholar 

  • Comstock JP (2002) Hydraulic and chemical signaling in the control of stomatal conductance and transpiration. J Exp Bot 53:195–200

    Article  CAS  PubMed  Google Scholar 

  • Cooper HD, Clarkson DT (1989) Cycling of amino-nitrogen and other nutrients between shoots and roots in cereals. A possible mechanism integrating shoot and root in the regulation of nutrient uptake. J Exp Bot 40:753–762

    Article  CAS  Google Scholar 

  • Davies E (2004) New functions for electrical signals in plants. New Phytol 161:607–610

    Article  PubMed  Google Scholar 

  • Davies WJ, Mansfield TA, Hetherington AM (1990) Sensing of soil water status and the regulation of plant growth and development. Plant Cell Environ 13:709–719

    Article  Google Scholar 

  • Davies WJ, Tardieu F, Trejo CL (1994) How do chemical signals work in plants that grow in drying soil? Plant Physiol 104:309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies WJ, Zhang J (1991) Root signals and the regulation of growth and development of plants in drying soil. Annu Rev Plant Biol Plant Mol Biol 42:55–76

    Article  CAS  Google Scholar 

  • Friedman WE, Diggle PK (2011) Charles Darwin and the origins of plant evolutionary developmental biology. Plant Cell 23:1194–1207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friml J (2003) Auxin transport—shaping the plant. Curr Opin Plant Biol 6:7–12

    Article  CAS  Google Scholar 

  • Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jürgens G (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–153

    Article  CAS  PubMed  Google Scholar 

  • Fromm J, Eschrich W (1993) Electric signals released from roots of willow (Salix viminalis L.) change transpiration and photosynthesis. J Plant Physiol 141:673–680

    Article  CAS  Google Scholar 

  • Fromm J, Fei H (1998) Electrical signaling and gas exchange in maize plants of drying soil. Plant Sci 132:203–213

    Article  CAS  Google Scholar 

  • Fromm J, Lautner S (2007) Electrical signals and their physiological significance in plants. Plant Cell Environ 30:249–257

    Article  CAS  PubMed  Google Scholar 

  • Frost WB, Blevins DG, Barnett NM (1978) Cation pretreatment effects on nitrate uptake, xylem exudates, and malate levels in wheat seedlings. Plant Physiol 61:323–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gersani M, Abramsky Z, Falik O (1998) Density-dependent habitat selection in plants. Evol Ecol 12:223–234

    Article  Google Scholar 

  • Geßler A, Weber P, Schneider S, Rennenberg H (2003) Bidirectional exchange of amino compounds between phloem and xylem during long-distance transport in Norway spruce trees (Picea abies [L.] Karst.) J Exp Bot 54:1389–1397

    Article  CAS  PubMed  Google Scholar 

  • Gil PM, Gurovich L, Schaffer B, Alcayaga J, Rey S, Iturriaga R (2008) Root to leaf electrical signaling in avocado in response to light and soil water content. J Plant Phys 165:1070–1078

    Article  CAS  Google Scholar 

  • Gould JG (2002) The structure of evolutionary theory. Harvard University Press, Cambridge, Massachusetts

    Google Scholar 

  • Grams TEE, Koziolek C, Lautner S, Matyssek R, Fromm J (2007) Distinct roles of electric and hydraulic signals on the reaction of leaf gas exchange upon re-irrigation in Zea mays L. Plant Cell Environ 30:79–84

    Article  PubMed  Google Scholar 

  • Grams TEE, Lautner S, Felle HH, Matyssek R, Fromm J (2009) Heat-induced electrical signals affect cytoplasmic and apoplastic pH as well as photosynthesis during propagation through the maize leaf. Plant Cell Environ 32:319–326

    Article  CAS  PubMed  Google Scholar 

  • Grieneisen VA, Xu J, Marée AFM, Hogeweg P, Scheres B (2007) Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449:1008–1013

    Article  CAS  PubMed  Google Scholar 

  • Haukioja E (1991) The influence of grazing on the evolution, morphology and physiology of plants as modular organisms. Philos Trans Roy Soc London Ser B Biol Sci 333:241–247

    Article  Google Scholar 

  • Heil M (2010) Within-plant signalling by volatiles triggers systemic defences. In: Baluška F, Ninkovic V (eds) Plant communication from an ecological perspective. Springer, Berlin, pp 99–112

    Chapter  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283–335

    Google Scholar 

  • Herschbach C, Rennenberg H (1994) Influence of glutathione (GSH) on net uptake of sulphate and sulphate transport in tobacco plants. J Exp Bot 45:1069–1076

    Article  CAS  Google Scholar 

  • Hütt M-Th (2013) A network view on patterns of gene expression and metabolic activity. Nova Acta Leopoldina NF 114(391):183–199

    Google Scholar 

  • Jeschke WD, Atkins CA, Pate JS (1985) Ion circulation via phloem and xylem between root and shoot of nodulated white lupin. J Plant Physiol 117:319–330

    Article  CAS  Google Scholar 

  • Jeschke WD, Pate JA (1991a) Cation and chloride partitioning through xylem and phloem within the whole plant of Ricinus communis L. under conditions of salt stress. J Exp Bot 42:1105–1116

    Article  CAS  Google Scholar 

  • Jeschke WD, Pate JS (1991b) Modelling of the uptake, flow and utilization of C, N and H2O within whole plants of Ricinus communis L. based on empirical data. J Plant Physiol 137:488–498

    Article  CAS  Google Scholar 

  • Jeschke WD, Pate JS, Atkins CA (1987) Partitioning of K+, Na+, Mg++, and Ca++ through xylem and phloem to component organs of white lupin under mild salinity. J Plant Physiol 128:77–93

    Article  CAS  Google Scholar 

  • Johnson BR, Lam SK (2010) Self-organization, natural selection, and evolution: cellular hardware and genetic software. Bioscience 60:879–885

    Article  Google Scholar 

  • Kadereit JW, Körner C, Kost B, Sonnewald U (2014) Strasburger. Lehrbuch der Pflanzenwissenschaften, 37th edn. Springer, Heidelberg

    Book  Google Scholar 

  • Kirkby EA, Knight AH (1977) Influence of the level of nitrate nutrition on ion uptake and assimilation, organic acid accumulation, and cation-anion balance in whole tomato plants. Plant Physiol 66:349–353

    Article  Google Scholar 

  • Kolosova N, Bohlmann J (2012) Conifer defense against insects and fungal pathogens. In: Matyssek R, Schnyder H, Oßwald W, Ernst D, Munch JC, Pretzsch (eds) Growth and defence in plants. Resource allocation at multiple scales. Ecological Studies, vol 220. Springer, Heidelberg, pp 85–109

    Chapter  Google Scholar 

  • Körner C (2012) Biological diversity—The essence of life and ecosystem functioning. Nova Acta Leopoldina NF 116(394):147–159

    Google Scholar 

  • Kost B (2014) Systemische Kontrolle der Entwicklung. In: Kadereit JW, Körner C, Kost B, Sonnewald U (eds) Strasburger, Lehrbuch der Pflanzenwissenschaften, 37th edn. Springer, Heidelberg, pp 282–283

    Google Scholar 

  • de Kroon H, Huber H, Stuefer JF, van Groenendael JM (2005) A modular concept of phenotypic plasticity in plants. New Phytol 166:73–82

    Article  PubMed  Google Scholar 

  • Larsson C-M, Larsson M, Purves JV, Clarkson DT (1991) Translocation and cycling through roots of recently absorbed nitrogen and sulphur in wheat (Triticum aestivum) during vegetative and generative growth. Physiol Plant 82:345–352

    Article  CAS  Google Scholar 

  • Lautner S, Grams TEE, Matyssek R, Fromm J (2005) Characteristics of electrical signals in poplar and responses in photosynthesis. Plant Physiol 138:2200–2209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Layer PG (2019) Brains emerging: on modularity and self organization of neuronal development in vivo and in vitro. In: Wegner LH, Lüttge U (eds) Emergence and modularity in life science. Springer, Heidelberg, pp 145–169

    Google Scholar 

  • Longstreth DJ, Nobel PS (1980) Nutrient influences on leaf photosynthesis. Effects of nitrogen, phosphorus and potassium for Gossypium hirsutum L. Plant Physiol 65:541–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loomis WE (1953) Growth and differentiation—an introduction and summary. In: Loomis WE (ed) Growth and differentiation in plants. Iowa State College Press, Ames, pp 1–17

    Google Scholar 

  • Lorenz K (1977) Die Rückseite des Spiegels. Deutscher Taschenbuchverlag, München, Versuch einer Naturgeschichte menschlichen Erkennens

    Google Scholar 

  • Lucas M, Laplace L, Bennett MJ (2011) Plant systems biology: network matters. Plant Cell Environ 34:535–553

    Article  PubMed  Google Scholar 

  • Lüttge U (2012) Modularity and emergence: biology’s challenge in understanding life. Plant Biol 14:865–871

    Article  PubMed  Google Scholar 

  • Lüttge U (2013) Whole-plant physiology: synergistic emergence rather than modularity. Progr Bot 74:165–190

    Article  CAS  Google Scholar 

  • Lüttge U (2016) Physics and the molecular revolution in plant biology: union needed for managing the future. AIMS Biophy 3:501–521

    Article  CAS  Google Scholar 

  • Lüttge U, Higinbotham N (1979) Transport in plants. Springer, New York, Heidelberg, Berlin

    Google Scholar 

  • Lüttge U, Kluge M, Thiel G (2010) Botanik. Die umfassende Biologie der Pflanzen: Wiley-VCH, Weinheim

    Google Scholar 

  • Marr C, Geertz M, Hütt M-T, Muskhelishvili G (2008) Dissecting the logical types of network control in gene expression profiles. BMS Syst Biol 2:18

    Article  CAS  Google Scholar 

  • Matyssek R, Agerer R Ernst D, Munch J-C, Oßwald W, Pretzsch H, Priesack E, Schnyder H, Treutter D (2005) The plant’s capacity in regulating resource demand. Plant Biol 7:560–580

    Article  CAS  PubMed  Google Scholar 

  • Matyssek R, Lüttge U, Rennenberg H (eds) (2013) The alternatives growth and defense: resource allocation at multiple scales in plants. Nova Acta Leopoldina NF 114/No 391

    Google Scholar 

  • Matyssek R, Maruyama S, Boyer JS (1991) Growth-induced water potentials may mobilize internal water for growth. Plant Cell Environ 14:917–923

    Article  Google Scholar 

  • Matyssek R, Schnyder H, Elstner E-F, Munch J-C, Pretzsch H, Sandermann H (2002) Growth and parasite defence in plants: the balance between resource sequestration and retention. Plant Biol 4:133–136

    Article  Google Scholar 

  • Matyssek R, Schnyder H, Oßwald W, Ernst D, Munch JC, Pretzsch (eds) (2012a) Growth and defence in plants. Resource allocation at multiple scales. Ecological studies, vol 220. Springer, Heidelberg

    Google Scholar 

  • Matyssek R, Gayler S, zu Castell W, Oßwald W, Ernst D, Pretzsch H, Schnyder H, Munch JC (2012b) Predictability of plant resource allocation: New theory needed? In: Matyssek R, Schnyder H, Oßwald W, Ernst D, Munch JC, Pretzsch (eds) Growth and defence in plants. Resource allocation at multiple scales. Ecological studies, vol 220. Springer, Heidelberg, pp 433–449

    Chapter  Google Scholar 

  • Morris, SK (2003) Life’s solution. Inevitable humans in a lonely universe. Cambridge University Press, New York

    Google Scholar 

  • Müller GB (2007) Evo-devo: extending the evolutionary synthesis. Nat Rev Genet 8:939–949

    Article  CAS  Google Scholar 

  • Münch E (1930) Die Stoffbewegungen in der Pflanze. Gustav Fischer, Jena

    Google Scholar 

  • Ninkovic V (2010) Volatile interaction between undamaged plants: A short cut to coexistence. In: Baluška F, Ninkovic V (eds) Plant communication from an ecological perspective. Springer, Berlin Heidelberg, pp 75–86

    Chapter  Google Scholar 

  • Oßwald W, Fleischmann F, Treutter D (2012) Host-parasite interactions and trade-offs between growth- and defence-related metabolism under changing environments. In: Matyssek R, Schnyder H, Oßwald W, Ernst D, Munch JC, Pretzsch (eds) Growth and defence in plants. Resource allocation at multiple scales. Ecological studies, vol 220. Springer, Heidelberg, pp 53–83

    Chapter  Google Scholar 

  • Paponov IA, Teale WD, Trebar M, Blilou I, Palme K (2005) The PIN auxin efflux facilitators: evolutionary and functional perspectives. Trends Plant Sci 10:170–177

    Article  CAS  PubMed  Google Scholar 

  • Peuke AD, Glaab J, Kaiser WM, Jeschke WD (1996) The uptake and flow of C, N and ions between roots and shoots in Ricinus communis L. IV. Flow and metabolism of inorganic nitrogen and malate depending on nitrogen nutrition and salt treatment. J Exp Bot 47:377–385

    Article  CAS  Google Scholar 

  • Pitman MG (1975) Whole plants. In: Baker DA, Hall JL (eds) Ion transport in plant cells and tissues. North Holland Publ Comp, Amsterdam Oxford, pp 267–308

    Google Scholar 

  • Rennenberg H, Schmitz K, Bergmann L (1979) Long-distance transport of sulfur in Nicotiana tabacum. Planta 147:57–62

    Article  CAS  PubMed  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Ann Rev Plant Biol 57:675–709

    Article  CAS  Google Scholar 

  • Ruther J, Kleier S (2005) Plant-plant signaling: ethylene synergizes volatile emission in Zea mays induced by exposure to (Z)-3-hexen1-ol. J Chem Ecol 21:2217–2222

    Article  CAS  Google Scholar 

  • Scheible W-R, Morcuende R, Czechoswski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M (2004) Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol 136:2483–2499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schurr U, Schulze E-D (1996) Effects of drought on nutrient and ABA transport in Ricinus communis. Plant Cell Environ 19:665–674

    Article  CAS  Google Scholar 

  • Shabala S, Pang J, Zhou M, Shabala L, Cuin T, Nick P, Wegner LH (2009) Electrical signalling and cytokinins mediate effects of light and root cutting on ion uptake in intact plants. Plant Cell Environ 32:194–207

    Article  CAS  Google Scholar 

  • Shabala S, White RC, Djordjevic MA, Ruan Y-L, Mathesius U (2016) Root-to-shoot signalling: integration of diverse molecules, pathways and functions. Funct Plant Biol 43:87–104

    Article  CAS  PubMed  Google Scholar 

  • da Silva MC, Shelp BJ (1990) Xylem-to-phloem transfer of organic nitrogen in young soybean plants. Plant Physiol 92:797–801

    Article  PubMed  PubMed Central  Google Scholar 

  • Souza GM, Lüttge U (2015) Stability as a phenomenon emergent from plasticity-complexity-diversity in eco-physiology. Progr Bot 76:211–239

    CAS  Google Scholar 

  • Souza GM, Bertolli SC, Lüttge U (2016) Hierarchy and information in a system approach to plant biology: explaining the irreducibility in plant ecophysiology. Progr Bot 77:167–186

    Google Scholar 

  • Stenz H-G, Weisenseel MH (1991) DC-electric field affects the growth direction and statocyte polarity of root tips (Lepidium sativum) J Plant Physiol 138:335–344

    Article  Google Scholar 

  • Stenz H-G, Weisenseel MH (1993) Electrotropism of maize (Zea mays L.) roots. Facts and artifacts. Plant Physiol 101:1107–1111

    Article  PubMed  Google Scholar 

  • Sutcliffe JF (1976a) Regulation in the whole plant. Enc Plant Physiol 2B (Springer, Berlin) 394–417

    Chapter  Google Scholar 

  • Sutcliffe JF (1976b) Regulation of ion transport in the whole plant. In: Sunderland N (ed) Perspectives in experimental biology, vol II, Botany. Pergamon Press, Oxford, p 542

    Chapter  Google Scholar 

  • Tang A-C, Boyer JS (2003) Root pressurization affects growth-induced water potentials and growth in dehydrated maize plants. J Exp Bot 54:2479–2488

    Article  CAS  PubMed  Google Scholar 

  • Tardieu F, Davies WJ (1993) Integration of hydraulic and chemical signalling in the control of stomatal conductance and water status of droughted plants. Plant Cell Environ 16:341–349

    Article  CAS  Google Scholar 

  • Tardieu F, Zhang J, Gowing DJG (1993) Stomatal control by both [ABA] in the xylem sap and leaf water status: a test of a model for droughted or ABA-fed field-grown maize. Plant Cell Environ 16:413–420

    Article  CAS  Google Scholar 

  • Thornley JHM (1972) A balanced quantitative model for root : shoot ratios in vegetative plants. Ann Bot 36:431–441

    Article  Google Scholar 

  • Turner NC, Schulze E-D, Gollan T (1985) The responses of stomata and leaf gas exchange to vapour pressure deficits and soil water content. II. In the mesophytic herbaceous species Helianthus annuus. Oecologia 65:348–355

    Article  PubMed  Google Scholar 

  • van Bel AJE (1990) Xylem-phloem exchange via the rays: the undervalued route of transport. J Exp Bot 41:631–644

    Article  Google Scholar 

  • Volkov AG (2000) Green plants: electrochemical interfaces. J Electroanalytical Chemistry 483:150–156

    Article  CAS  Google Scholar 

  • von Dahl CC, Baldwin IT (2007) Deciphering the role of ethylene in plant-herbivore interactions. J Plant Growth Regul 26:201–209

    Article  CAS  Google Scholar 

  • Wallace W, Pate JS (1967) Nitrate assimilation in higher plants with special reference to the cocklebur (Xanthium pennsylvanicum Wallr.) Ann Bot 31:213–228

    Article  CAS  Google Scholar 

  • Wartinger A, Heilmeier H, Hartung W, Schulze E-D (1990) Daily and seasonal courses of leaf conductance and abscisic acid in the xylem sap of almond trees [Prunus dulcis (Miller) D.A. Webb] under desert conditions. New Phytol 116:581–587

    Article  CAS  Google Scholar 

  • Weston DJ, Hanson PJ, Norby RJ, Tuskan GA, Wullschleger SD (2012) From system biology to photosynthesis and whole-plant physiology. Plant Signal Behav 7:260–262

    Article  PubMed  PubMed Central  Google Scholar 

  • Wikipedia (2012) Emergenz. http://de.wikipedia.org/wiki/Emergenz: Aristoteles, Metaphysik, Buch 8.6. 1045a: 8–10

  • Wilkinson S, Davies WJ (1997) Xylem sap pH increase: a drought signal received at the apoplastic face of the guard cell which involves the suppression of saturable ABA uptake by the epidermal symplast. Plant Physiol 113:559–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson S, Corlett JE, Oger L, Davies WJ (1998) Effects of xylem pH on transpiration from wild-type and flacca tomato leaves: a vital role for abscisic acid in preventing excessive water loss even from well-watered plants. Plant Physiol 117:703–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Davies WJ (1990) Changes in the concentration of ABA in xylem sap as a function of changing soil water status can account for changes in leaf conductance and growth. Plant Cell Environ 13:277–285

    Article  CAS  Google Scholar 

  • Ziegler H (1956) Untersuchungen über die Leitung und Sekretion der Assimilate. Planta 47:447–500

    Article  CAS  Google Scholar 

  • Ziegler H (1998) Physiologie des Formwechsels. In: Sitte P, Ziegler H, Ehrendorfer F, Bresinsky A (eds) Strasburger, Lehrbuch der Botanik. Gustav Fischer, Stuttgart, pp 362–419

    Google Scholar 

  • Zimmermann W (1930) Die Phylogenie der Pflanze. Gustav Fischer, Jena

    Google Scholar 

  • zu Castell W, Lüttge U, Matyssek R (2019) Gaia—a holobiont like system emerging from interaction. In: Wegner LH, Lüttge U (eds) Emergence and modularity in life science. Springer, Heidelberg, pp 255–279

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Lüttge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lüttge, U. (2019). Plants: Unitary Organisms Emerging From Integration and Self-organization of Modules. In: Wegner, L., Lüttge, U. (eds) Emergence and Modularity in Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-06128-9_8

Download citation

Publish with us

Policies and ethics