Skip to main content

Cooperative Muscular Activation by Calcium

  • Chapter
  • First Online:
The Sliding-Filament Theory of Muscle Contraction
  • 1145 Accesses

Abstract

An ultimate test of theories of muscle contraction is to reproduce contractile behaviour as a function of the sarcoplasmic concentration of calcium ions. In muscle, the cooperative nature of Ca2+-activation seen with regulated actin in solution is manifest in the steep rise of isometric tension and ATPase rate with [Ca2+], and also in the regulation of transient responses. This chapter surveys the wealth of behaviour observed in striated muscle, fibres, myofibrils and motility assays, before turning to theories of cooperative regulation in fibres. For a single thin filament, a lattice theory of cooperative activation with TmTn units as a continuous flexible chain is developed, and explored computationally with a simple crossbridge model. Spontaneous oscillatory contractions (SPOC) constitute a new state of muscle observed only at low calcium, which can be modelled in terms of enhanced length activation on the descending limb. Finally, we consider direct myosin regulation by its light chains, and whether this mechanism can act cooperatively.

Muscle is so varied structurally and functionally that the methods used in its study include almost every discipline used by biologists, biochemists and biophysicists A. Sandow, 1970, Ann. Rev. Physiol. Vol. 32, page 87.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen D, Kurihara S (1982) The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle. J Physiol (London) 327:79–94

    Article  CAS  Google Scholar 

  • Anazawa T, Yasuda K, Ishiwata S (1992) Spontaneous oscillation of tension and sarcomere length in skeletal myofibrils. Biophys J 61:1099–1108

    Article  CAS  Google Scholar 

  • Ashley CC, Mulligan IP, Lea TJ (1991) Ca2+ and activation mechanisms in skeletal muscle. Q Rev Biophys 24:1–73

    Article  CAS  Google Scholar 

  • Belus A, Piroddi N, Tesi C (2003) Mechanism of cross-bridge detachment in isometric force relaxation of skeletal and cardiac myofibrils. J Muscle Res Cell Motil 24:261–267

    Article  CAS  Google Scholar 

  • Brandt PWS, Diamond MS, Rutchik JS, Schachat FH (1987) Cooperative interactions between troponin-tropoyosin units extend the length of the thin filament in skeletal muscle. J Mol Biol 195:885–896

    Article  CAS  Google Scholar 

  • Brandt PWS, Roemer D, Schachat FH (1990) Cooperative activation of skeletal muscle thin filaments by rigor crossbridges: the effect of troponin-C extraction. J Mol Biol 212:473–480

    Article  CAS  Google Scholar 

  • Brenner B (1988) Effect of Ca2+ on cross-bridge turnover kinetics in skinned single rabbit psoas fibres: implications for regulation of muscle contraction. Proc Natl Acad Sci USA 85:3265–3269

    Article  CAS  Google Scholar 

  • Brenner B, Eisenberg E (1986) Rate of force generation in muscle: correlation with actomyosin ATPase activity in solution. Proc Natl Acad Sci USA 83:3542–3546

    Article  CAS  Google Scholar 

  • Brenner B, Yu LC, Podolsky RJ (1984) X-ray diffraction evidence for cross-bridge formation in relaxed muscle fibers at various ionic strengths. Biophys J 46:299–206

    Article  CAS  Google Scholar 

  • Brenner B, Xu S, Chalovich JM, Yu LC (1996) Radial equilibrium lengths of actomyosin cross-bridges in muscle. Biophys J 71:2751–2758

    Article  CAS  Google Scholar 

  • Brenner B, Kraft T, Yu LC, Chalovich JM (1999) Thin filament activation probed by fluorescence of N-((2-(iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-1,3-diazole-labelled troponin I incorporated into skinned fibers of rabbit psoas muscle: implications for regulation of muscle contraction. Biophys J 77:2692–2708

    Article  CAS  Google Scholar 

  • Chalovich JM, Eisenberg E (1982) Inhibition of actomyosin ATPase activity by troponin-tropomyosin without blocking the binding of myosin to actin. J Biol Chem 257:2432–2437

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ebashi S, Endo M (1968) Calcium ion and muscle contraction. Prog Biophys Mol Biol 18:123–183

    Article  CAS  Google Scholar 

  • Edman KAP (1975) Mechanical deactivation induced by active shortening in isolated muscle fibres of the frog. J Physiol (London) 246:255–275

    Article  CAS  Google Scholar 

  • Edman KAP (1980) Depression of mechanical performance by active shortening during twitch and tetanus of vertebrate muscle fibres. Acta Physiol Scand 109:15–26

    Article  CAS  Google Scholar 

  • Fabiato A, Fabiato F (1978) Myofilament-generated tension oscillations during partial calcium activation and activation dependence of the sarcomere length-tension relation of skinned cardiac cells. J Gen Physiol 72:667–699

    Article  CAS  Google Scholar 

  • Fuchs F, Wang YP (1991) Force, length and Ca2+-troponin C affinity in skeletal muscle. Am J Phys 253:C541–C546

    Google Scholar 

  • Fusi L, Brunello E, Yan Z, Irving M (2016) Thick filament mechano-sensing is a calcium-independent regulatory mechanism in skeletal muscle. Nat Commun 7:13281

    Article  CAS  Google Scholar 

  • Gafurov B, Chen Y-D, Chalovich JM (2004) Ca2+ and ionic strength dependencies of S1-ADP binding to actin-tropomyosin-troponin: regulatory implications. Biophys J 87:1825–1835

    Article  CAS  Google Scholar 

  • Gordon AM, Homsher E, Regnier M (2000) Regulation of contraction in striated muscle. Phys Rev 80:853–924

    CAS  Google Scholar 

  • Gorga JA, Fishbaugher DE, Vanburen P (2003) Activation of the calcium-regulated thin filament by myosin strong binding. Biophys J 85:2484–2491

    Article  CAS  Google Scholar 

  • Guth K, Potter JD (1987) Effect of rigor and cycling cross-bridges on the structure of troponin C and on the Ca2+ affinity of the Ca2+-speciofic regulatory sites in skinned rabbit psoas fibers. J Biol Chem 262:13267–13635

    Google Scholar 

  • Hancock WO, Huntsman LL, Gordon AL (1997) Models of calcium activation account for differences between skeletal and cardiac force redevelopment kinetics. J Muscle Res Cell Motil 18:671–681

    Article  CAS  Google Scholar 

  • Hoar PE, Mahoney CW, Kerrick WGL (1987) MgADP- increases maximum tension and Ca2+ sensitivity in skinned rabbit soleus fibres. Pflugers Arch 410:30–36

    Article  CAS  Google Scholar 

  • Hodgkinson J (2000) Actin and the smooth muscle regulatory proteins: a structural perspective. J Muscle Res Cell Motil 21:115–130

    Article  CAS  Google Scholar 

  • Homsher WE, Kim B, Bobkova A, Tobacman LS (1996) Calcium regulation of thin filament movement in an in vitro motility assay. Biophys J 70:1881–1892

    Article  CAS  Google Scholar 

  • Hussan J, de Tombe PP, Rice JJ (2006) A spatially detailed myofilament model as a basis for large-scale biological simulations. IBM J Res Dev 50:583–600

    Article  CAS  Google Scholar 

  • Huxley AF, Simmons RM (1970) Rapid ‘give’ and the tension ‘shoulder’ in the relaxation of frog muscle fibres. J Physiol (London) 210:32P–33P

    CAS  Google Scholar 

  • Huxley AF, Simmons RM (1973) Mechanical transients and the origin of muscular force. Cold Spring Harb Symp Quant Biol 37:669–680

    Article  CAS  Google Scholar 

  • Irving M (2017) Regulation of contraction by the thick filaments in skeletal muscle. Biophys J 113:2579–2594

    Article  CAS  Google Scholar 

  • Ishiwata S, Yasuda K (1993) Mechano-chemical coupling in spontaneous oscillatory contraction of muscle. Phase Transit 45:105–136

    Article  CAS  Google Scholar 

  • Ishiwata S, Anazawa T, Fujita T, Fukuda N, Shimizu H, Yasuda K (1993) Spontaneous tension oscillation (SPOC) of muscle fibers and myofibrils: minimum requirements for SPOC. In: Sugi H, Pollack GH (eds) Mechanism of myofilament sliding in muscle contraction. Plenum Press, New York

    Google Scholar 

  • Ishiwata S, Yasuda K, Shindo Y, Fujita H (1996) Microscopic analysis of the elastic properties of connectin/titin and nebulin in myofibrils. Adv Biophys 33:135–142

    Article  CAS  Google Scholar 

  • Ishiwata S, Shimamoto Y, Fukuda N (2011) Contractile system of muscle as an auto-oscillator. Prog Biophys Mol Biol 105:187–198

    Article  CAS  Google Scholar 

  • Jung HS, Komatsu S, Ikebe M, Craig R (2008) Head-head and head-tail interaction: a general mechanism for switching off myosin II activity in cells. Mol Biol Cell 19:3234–3242

    Article  CAS  Google Scholar 

  • Kampourakis T, Sun Y-B, Irving M (2016) Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments. Proc Natl Acad Sci USA 113:E3039–E3047

    Article  CAS  Google Scholar 

  • Kerrick WGL, Xu Y (2004) Inorganic phosphate affects the pCa-force relationship more than the pCa-ATPase by increasing the rate of dissociation of force generating cross-bridges in skinned fibres from both EDL and soleus muscles of the rat. J Muscle Res Cell Motil 25:107–117

    Article  CAS  Google Scholar 

  • Konhilas JP, Irving TC, De Tombe PP (2002) Length-dependent activation in three striated muscle types of the rat. J Physiol (London) 544:225–236

    Article  CAS  Google Scholar 

  • Linari M, Brunello E, Reconditi M, Fusi L, Caremani M, Narayanan T, Piazzesi G, Lombardi V, Irving M (2015) Force generation by skeletal muscle is controlled by mechanosensing in myosin filaments. Nature 526:276–279

    Article  Google Scholar 

  • Luo Y, Cooke R, Pate E (1994) Effect of series elasticity on delay in development of tension relative to stiffness during muscle activation. Am J Phys 267:C1598–C1606

    Article  CAS  Google Scholar 

  • Martyn DA, Chase PB (1995) Faster force transient kinetics at submaximal Ca2+ activation of skinned psoas fibres from rabbit. Biophys J 68:235–242

    Article  CAS  Google Scholar 

  • Martyn DA, Gordon AM (1988) Length and myofilament spacing-dependent change in calcium sensitivity of skeletal fibres: effects of pH and ionic strength. J Muscle Res Cell Motil 9:428–445

    Article  CAS  Google Scholar 

  • Martyn DA, Chase PB, Regnier M, Gordon AM (2002) A simple model with myofilament compliance predicts activation-dependent crossbridge kinetics in skinned skeletal fibers. Biophys J 83:3425–3434

    Article  CAS  Google Scholar 

  • Martyn DA, Adhikara BB, Regnier M, Gu J, Xu S, Yu LC (2004) Response of equatorial X-ray reflections and stiffness to altered sarcomere length and myofilament lattice spacing in relaxed skinned cardiac muscle. Biophys J 86:1002–1011

    Article  CAS  Google Scholar 

  • McDonald KS, Wolff MR, Moss RL (1997) Sarcomere length dependence of the rate of tension redevelopment and submaximal tension in rat and rabbit skinned skeletal muscle fibres. J Physiol (London) 501:607–621

    Article  CAS  Google Scholar 

  • Metzger JM (1995) Myosin binding-induced cooperative activation of the thin filament in cardiac myocytes and skeletal muscle fibers. Biophys J 68:1430–1442

    Article  CAS  Google Scholar 

  • Metzger JM, Moss RL (1991) Kinetics of a Ca2+-sensitive cross-bridge state transition in skeletal muscle fibers. J Gen Physiol 98:233–249

    Article  CAS  Google Scholar 

  • Moss RL, Fitzsimmons DP (2002) Frank-Starling relationship: long on importance, short on mechanism. Circ Res 90:11–13

    Article  CAS  Google Scholar 

  • Moss RL, Swinford AE, Greaser ML (1983) Alterations in the Ca2+ sensitivity of tension development by single skeletal muscle fibers at stretched lengths. Biophys J 43:115–119

    Article  CAS  Google Scholar 

  • Okamura N, Ishiwata S (1988) Spontaneous oscillatory contraction of sarcomeres in skeletal myofibrils. J Muscle Res Cell Motil 9:111–119

    Article  CAS  Google Scholar 

  • Pan B-S, Solaro RJ (1987) Calcium-binding properties of troponin C in detergent-skinned heart muscle fibers. J Biol Chem 262:7839–7849

    CAS  PubMed  Google Scholar 

  • Ranatunga KW (1994) Thermal stress and ca-independent contractile activation in mammalian skeletal muscle fibers at high temperatures. Biophys J 66:1531–1541

    Article  CAS  Google Scholar 

  • Razumova MV, Bukatina AE, Campbell KB (2000) Different myofilament nearest-neighhbour interactions have distinctive effects on contractile behaviour. Biophys J 78:3120–3137

    Article  CAS  Google Scholar 

  • Regnier M, Morris C, Homsher M (1995) Regulation of the cross-bridge transition from a weakly to strongly bound state in skinned rabbit muscle fibers. Am J Phys 269:C1532–C1539

    Article  CAS  Google Scholar 

  • Robinson JM, Wang Y, Kerrick WGL, Kawai R, Cheung HC (2002) Activation of striated muscle: nearest-neighbour regulatory units and cross-bridge influence on myofilament kinetics. J Mol Biol 322:1065–1088

    Article  CAS  Google Scholar 

  • Ruegg JC (2012) Calcium in muscle activation; a comparative approach. Springer, Berlin

    Google Scholar 

  • Sato K, Ohtaki M, Shimamoto Y, Ishiwata S (2011) A theory on auto-oscillation and contraction in striated muscle. Prog Biophys Mol Biol 105:199–207

    Article  CAS  Google Scholar 

  • Sato K, Kuramoto Y, Ohtaki M, Shimamoto Y, Ishiwata S (2013) Local and globally coupled oscillators in muscle. Phys Rev Lett 111(5):108104

    Article  Google Scholar 

  • Shimamoto Y, Suzuki M, Ishiwata S (2008) Length-dependent activation and auto-oscillations in skeletal myofibrils at partial activation by Ca2+. Biochem Biophys Res Commun 366:233–238

    Article  CAS  Google Scholar 

  • Shimizu H, Fukita T, Ishiwata S (1992) Regulation of tension development by MgADP and pi without Ca2+: role in spontaneous tension oscillation of skeletal muscle. Biophys J 61:1087–1098

    Article  CAS  Google Scholar 

  • Shiner JS, Solaro RJ (1982) Activation of thin-filament-regulated muscle by calcium ion: considerations based on nearest-neighbour lattice statistics. Proc Natl Acad Sci USA 79:4637–4641

    Article  CAS  Google Scholar 

  • Smith DA, Stephenson DG (1994) Theory and observation of spontaneous oscillatory contractions in skeletal myofibrils. J Muscle Res Cell Motil 15:369–389

    Article  CAS  Google Scholar 

  • Smith DA, Stephenson DG (2009) The mechanism of spontaneous oscillatory contractions in skeletal muscle. Biophys J 96:3682–3691

    Article  CAS  Google Scholar 

  • Stephenson DG, Wendt IR (1984) Length dependence of changes in sarcoplasmic calcium concentration and myofibrillar calcium sensitivity in striated muscle fibres. J Muscle Res Cell Motil 5:243–272

    Article  CAS  Google Scholar 

  • Stephenson DG, Williams DA (1981) Calcium-activated force responses in fast and slow-twitch skinned muscle fibres from the rat. J Physiol (London) 333:637–653

    Article  Google Scholar 

  • Tanner BCW, Daniel TL, Regnier M (2007) Sarcomere lattice geometry influences cooperative myosin binding in muscle. PLOS Comp Biol 3:1195–1211

    Article  CAS  Google Scholar 

  • Tesi C, Piroddi N, Colomo F, Poggesi C (2002) Relaxation kinetics following sudden Ca2+ reduction in single myofibrils from rabbit skeletal muscle. Biophys J 83:2142–2151

    Article  CAS  Google Scholar 

  • Tobacman LS, Butters CA (2000) A new model of cooperative myosin-thin filament binding. J Biol Chem 2756:27587–27593

    Google Scholar 

  • Vandenboom R, Clalin DR, Julian FJ (1998) Effects of rapid shortening on rate of force regeneration and myoplasmic [Ca2+] in intact frog skeletal muscle fibres. J Physiol (London) 511(1):171–180

    Article  CAS  Google Scholar 

  • Vandenboom R, Hannon JD, Sieck GC (2002) Isotonic force modulates force redevelopment rate of intact frog muscle fibres: evidence for cross-bridge induced thin filament activation. J Physiol (London) 543(2):555–566

    Article  CAS  Google Scholar 

  • Von der Ecken J, Muller M, Lehman W, Manstein DJ, Penczek PA, Raunser S (2015) Structure of the F-actin-tropomyosin complex. Nature 519:114–117

    Article  Google Scholar 

  • Wahr PA, Metzger JM (1999) Role of Ca2+ and cross-bridges in skeletal muscle thin filament activation probed with Ca2+ sensitizers. Biophys J 76:2166–2176

    Article  CAS  Google Scholar 

  • Wendt T, Taylor D, Trybus KM, Taylor K (2001) Three-dimensional image reconstruction of dephosphorylated smooth muscle heavymeromyosin reveals asymmetry in the interaction between myosin head and placement of subfragment 2. Proc Natl Acad Sci USA 98:4361–4366

    Article  CAS  Google Scholar 

  • Woodhead JL, Zhao FQ, Craig R, Egelman EH, Alamo L, Padron R (2005) Atomic model of a myosin filament in the relaxed state. Nature 436:1195–1199

    Article  CAS  Google Scholar 

  • Yasuda K, Shindo Y, Ishiwata S (1996) Synchronous behaviour of spontaneous oscillations of sarcomeres in skeletal myofibrils under isotonic conditions. Biophys J 70:1823–1829

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aitchison Smith, D. (2018). Cooperative Muscular Activation by Calcium. In: The Sliding-Filament Theory of Muscle Contraction. Springer, Cham. https://doi.org/10.1007/978-3-030-03526-6_8

Download citation

Publish with us

Policies and ethics