Skip to main content
Log in

Spontaneous oscillatory contraction of sarcomeres in skeletal myofibrils

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

We found that the lengths of all sarcomeres spontaneously oscillated in an isolated skeletal myofibril, when both ends were fixed, submillimolar to millimolar concentrations of ATP, ADP and inorganic phosphate (Pi) were present, and Ca2+ was removed. Narrowing and widening of an H-zone and an I-band were observed corresponding to the shortening and lengthening of a sarcomere, suggesting that thick and thin filaments slide past each other. The oscillation of each sarcomere was asymmetrical, consisting of a rapid lengthening phase and a slow shortening phase. The period of oscillation was about 3 s; the peak-to-peak amplitude of oscillation reached as much as 30% of the average sarcomere length. The propagation of the sarcomere oscillation along the long axis of the myofibril was observed occasionally in single myofibrils and frequently in bundles of myofibrils. The ‘state’-diagram showing the concentration range of ADP and Pi in which contraction, oscillation or relaxation of myofibrils occurs in the presence of ATP and the absence of Ca2+ suggested that the oscillation is a third state of skeletal muscle located in between the contracting and relaxing states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, R. H. &Cage, P. E. (1984) A possible mechanism of length activation in insect fibrillar flight muscle.J. Musc. Res. Cell. Motility 5, 387–97.

    Google Scholar 

  • Abbott, R. H. &Mannherz, H. G. (1970) Activation by MgADP and the correlation between tensions and ATPase activity in insect fibrillar muscle.Pflügers Arch. 321, 223–32.

    Google Scholar 

  • Armstrong, C. F., Huxley, A. F. &Julian, F. J. (1966) Oscillatory responses in frog skeletal muscle fibers.J. Physiol. (Lond.) 186, 26–7.

    Google Scholar 

  • Chalovich, J. M., Chock, P. B. &Eisenberg, E. (1981) Mechanism of action of troponin tropomyosin. Inhibition of actomyosin ATPase activity without inhibition of myosin binding to actin.J. biol. Chem. 256, 575–8.

    PubMed  Google Scholar 

  • Cooke, R. &Pate, E. (1985) The effects of ADP and phosphate on the contraction of muscle fibers.Biophys. J. 48, 789–98.

    PubMed  Google Scholar 

  • Curtin, N. A. &Davies, R. E. (1973) Chemical and mechanical changes during stretching of activated frog skeletal muscle.Cold Spring Harb. Symp. Quant. Biol. 37, 619–26.

    Google Scholar 

  • Eisenberg, E. &Hill, T. (1985) Muscle contraction and free energy transduction in biological systems.Science 227, 999–1006.

    PubMed  Google Scholar 

  • Endo, M. (1972) Stretch-induced increase in activation of skinned muscle fibres by calcium.Nature 237, 211–3.

    PubMed  Google Scholar 

  • Endo, M. (1973) Length dependence of activation of skinned muscle fibers.Cold Spring Harb. Symp. Quant. Biol. 37, 505–10.

    Google Scholar 

  • Fabiato, A. &Fabiato, F. (1978) Myofilament-generated tension oscillations during partial calcium activation and activation dependence of the sarcomere lengthtension relation of skinned cardiac cells.J. gen Physiol. 72, 667–99.

    PubMed  Google Scholar 

  • Goodall, M. C. (1956) Auto-oscillations in extracted muscle fibre systems.Nature 177, 1238–9.

    Google Scholar 

  • Hibberd, M. G., Dantzig, J. A., Trentham, D. R. &Goldman, Y. E. (1985) Phosphate release and force generation in skeletal muscle fibers.Science 228, 1317–9.

    PubMed  Google Scholar 

  • Higuchi, H. &Umazume, Y. (1985) Localization of the parallel elastic components in frog skinned muscle fibers studied by the dissociation of the A- and I-bands.Biophys. J. 48, 137–47.

    PubMed  Google Scholar 

  • Horowits, R., Kempner, E. S., Bisher, M. E. &Podolsky, R. J. (1986) A physiological role for titin and nebulin in skeletal muscle.Nature 323, 160–4.

    Google Scholar 

  • Ishiwata, S. &Funatsu, T. (1985) Does actin bind to the ends of thin filaments in skeletal muscle?J. Cell Biol. 100, 282–91.

    PubMed  Google Scholar 

  • Ishiwata, S., Okamura, N. &Shimizu, H. (1987) Spontaneous oscillation of sarcomeres in skeletal myofibril. Observation with a phase-contrast microscope.J. Musc. Res. Cell Motility 8, 275 (Abstr.).

    Google Scholar 

  • Iwazumi, T. &Pollack, G. H. (1981) The effect of sarcomere non-uniformity on the sarcomere lengthtension relationship of skinned fibers.J. cell. Physiol. 106, 321–37.

    PubMed  Google Scholar 

  • Jewell, B. R. &Rüegg, J. C. (1966) Oscillatory contraction of insect fibrillar muscle after glycerol extraction.Proc. Roy. Soc. B. 164, 428–59.

    Google Scholar 

  • Kawai, M. (1986) The role of orthophosphate in crossbridge kinetics in chemically skinned rabbit psoas fibres as detected with sinusoidal and step length alterations.J. Musc. Res. Cell Motility 7, 421–34.

    Google Scholar 

  • Kushmerick, M. J. &Podolsky, R. J. (1969) Ionic mobility in muscle cells.Science 166, 1297–8.

    PubMed  Google Scholar 

  • Lienhard, G. E. &Secemski, I. I. (1973) P1, P5Di (adenosine-5′) pentaphosphate, a potent multisubstrate inhibitor of adenylate kinase.J. biol. Chem. 248, 1121–3.

    PubMed  Google Scholar 

  • Lorand, L. &Moos, C. (1956) Auto-oscillations in extracted muscle fibre systems.Nature 177, 1239.

    PubMed  Google Scholar 

  • Magid, A. &Law, D. J. (1985) Myofibrils bear most of the resting tension in frog skeletal muscle.Science 230, 1280–2.

    PubMed  Google Scholar 

  • Mannherz, H. G. (1968) ATP-spaltung und ATP-diffusion in oscillierenden extrahierten muskelfasern.Pflügers Arch. 303, 230–48.

    Google Scholar 

  • Mooseker, M. S., Pratt, M., Kiehart, D. P. &Stephens, R. E. (1977) Cyclic contraction and relaxation of sarcomeres in isolated myofibrils.Biophys. J. 17, 173a (Abstr.).

    Google Scholar 

  • Murase, M., Tanaka, H., Nishiyama, K. &Shimizu, H. (1986) A three-state model for oscillation in muscle: sinusoidal analysis.J. Musc. Res. Cell Motility 7, 2–10.

    Google Scholar 

  • Natori, R. (1954) The role of myofibrils, sarcoplasma and sarcolemma in muscle contraction.Jikei Med. J. 1, 18–28.

    Google Scholar 

  • Onodera, N. &Umazume, Y. (1984) Periodic contraction of skinned muscle fiber under high pH.Biophys. (Jpn) 24, S84 (Abstr.).

    Google Scholar 

  • Pratt, M. M., Mooseker, M. S., Kiehart, D. P. &Stephens, R. E. (1976) Cyclic contraction and relaxation of glycerinated myofibrils isolated from skeletal muscle.Biol. Bull. 151, 426 (Abstr.).

    Google Scholar 

  • Pringle, J. W. (1978) Stretch activation of muscle: function and mechanism.Proc. Roy. Soc. B201, 107–30.

    Google Scholar 

  • Rüegg, J. C., Steiger, G. J. &Schädler, M. (1971) Mechanical activation of the contractile system in skeletal muscle.Pflügers Arch. 319, 139–45.

    Google Scholar 

  • Schädler, M., Steiger, G. &Rüegg, J. C. (1969) Tension transients in glycerol-extracted fibres of insect fibrillar muscle (Lethocerus maximus).Experientia 25, 942–3.

    PubMed  Google Scholar 

  • Steiger, G. J. (1977) Stretch activation and tension transients in cardiac, skeletal and insect flight muscle. InInsect Flight Muscle (edited byR. T. Tregear) pp. 221–68. Amsterdam: North-Holland.

    Google Scholar 

  • Stephenson, D. G. &Williams, D. A. (1982) Effects of sarcomere length on the force-pCa relation in fast- and slow-twitch skinned muscle fibres from the rat.J. Physiol. (Lond.) 333, 637–53.

    Google Scholar 

  • Stephenson, D. G. &Wendt, I. R. (1984) Length dependence of changes in sarcoplasmic calcium concentration and myofibrillar calcium sensitivity in striated muscle fibres.J. Musc. Res. Cell Motility 5, 243–72.

    Google Scholar 

  • Sugi, H. (1972) Tension changes during and after stretch in frog muscle fibres.J. Physiol. (Lond.) 225, 237–53.

    Google Scholar 

  • Weber, A. &Murray, J. M. (1973) Molecular control mechanisms in muscle contraction.Physiol. Rev. 53, 612–73.

    PubMed  Google Scholar 

  • White, D. C. S. &Thorson, J. (1972) Phosphate starvation and the nonlinear dynamics of insect fibrillar flight muscle.J. gen. Physiol. 60, 307–36.

    PubMed  Google Scholar 

  • White, D. C. S. &Thorson, J. (1973) The kinetics of muscle contraction.Prog. Biophys. molec. Biol. 27, 173–255.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okamura, N., Ishiwata, S. Spontaneous oscillatory contraction of sarcomeres in skeletal myofibrils. J Muscle Res Cell Motil 9, 111–119 (1988). https://doi.org/10.1007/BF01773733

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01773733

Keywords

Navigation