Skip to main content

Advances in Structure Determination of G Protein-Coupled Receptors by SFX

  • Chapter
  • First Online:
X-ray Free Electron Lasers

Abstract

G protein-coupled receptors (GPCRs) constitute the largest superfamily of membrane proteins, members of which are involved in regulation of critical sensory and physiological processes in the human body. High-resolution GPCR structures are essential for the elucidation of the molecular mechanisms of signal transduction, and for the rational design of more effective therapeutics. GPCR structure determination is, however, hampered by challenges in their expression, stabilization, and crystallization. The recent emergence of X-ray free electron lasers (FELs), and establishment of serial femtosecond crystallography (SFX) have advanced the field of structural biology by enabling access to high-resolution structure and dynamics of challenging to crystallize and radiation damage-sensitive macromolecules. In this chapter we outline relevant SFX technology developments and its applications to structural studies of GPCRs, shedding light on ligand binding to antitumor and anti-addiction targets, uncovering molecular mechanisms behind distinct functions of angiotensin receptors, elucidating full-length structures of multidomain class B and Frizzled receptors, and revealing details of interactions between GPCRs and arrestins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heng, B. C., Aubel, D., & Fussenegger, M. (2013). An overview of the diverse roles of G-protein coupled receptors (GPCRs) in the pathophysiology of various human diseases. Biotechnology Advances, 31(8), 1676–1694.

    Article  CAS  PubMed  Google Scholar 

  2. Venkatakrishnan, A. J., Deupi, X., Lebon, G., Tate, C. G., Schertler, G. F., & Babu, M. M. (2013). Molecular signatures of G-protein-coupled receptors. Nature, 494(7436), 185–194.

    Article  CAS  PubMed  Google Scholar 

  3. Audet, M., & Bouvier, M. (2012). Restructuring G-protein- coupled receptor activation. Cell, 151(1), 14–23.

    Article  CAS  PubMed  Google Scholar 

  4. Galandrin, S., Oligny-Longpre, G., & Bouvier, M. (2007). The evasive nature of drug efficacy: Implications for drug discovery. Trends in Pharmacological Sciences, 28(8), 423–430.

    Article  CAS  PubMed  Google Scholar 

  5. Rajagopal, S., Rajagopal, K., & Lefkowitz, R. J. (2010). Teaching old receptors new tricks: Biasing seven-transmembrane receptors. Nature Reviews Drug Discovery, 9(5), 373–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Overington, J. P., Al-Lazikani, B., & Hopkins, A. L. (2006). How many drug targets are there? Nature Reviews Drug Discovery, 5(12), 993–996.

    Article  CAS  PubMed  Google Scholar 

  7. Santos, R., Ursu, O., Gaulton, A., Bento, A. P., Donadi, R. S., Bologa, C. G., et al. (2017). A comprehensive map of molecular drug targets. Nature Reviews Drug Discovery, 16(1), 19–34.

    Article  CAS  PubMed  Google Scholar 

  8. Hauser, A. S., Attwood, M. M., Rask-Andersen, M., Schioth, H. N., & Gloriam, D. E. (2017). Trends in GPCR drug discovery: New agents, targets and indications. Nature Reviews Drug Discovery, 16(12), 829–842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chung, S., Funakoshi, T., & Civelli, O. (2008). Orphan GPCR research. British Journal of Pharmacology, 153(Suppl. 1), S339–S346.

    CAS  PubMed  Google Scholar 

  10. Stockert, J. A., & Devi, L. A. (2015). Advancements in therapeutically targeting orphan GPCRs. Frontiers in Pharmacology, 6, 100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Heydenreich, F. M., Vuckovic, Z., Matkovic, M., & Veprintsev, D. B. (2015). Stabilization of G protein-coupled receptors by point mutations. Frontiers in Pharmacology, 6, 82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Chun, E., Thompson, A. A., Liu, W., Roth, C. B., Griffith, M. T., Katritch, V., et al. (2012). Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. Structure, 20(6), 967–976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Caffrey, M., & Cherezov, V. (2009). Crystallizing membrane proteins using lipidic mesophases. Nature Protocols, 4(5), 706–731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Smith, J. L., Fischetti, R. F., & Yamamoto, M. (2012). Micro-crystallography comes of age. Current Opinion in Structural Biology, 22(5), 602–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jahnichen, S., Blanchetot, C., Maussang, D., Gonzalez-Pajuelo, M., Chow, K. Y., Bosch, L., et al. (2010). CXCR4 nanobodies (VHH-based single variable domains) potently inhibit chemotaxis and HIV-1 replication and mobilize stem cells. Proceedings of the National Academy of Sciences of the United States of America, 107(47), 20565–20570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mujic-Delic, A., de Wit, R. H., Verkaar, F., & Smit, M. J. (2014). GPCR-targeting nanobodies: Attractive research tools, diagnostics, and therapeutics. Trends in Pharmacological Sciences, 35(5), 247–255.

    Article  CAS  PubMed  Google Scholar 

  17. Ghosh, E., Kumari, P., Jaiman, D., & Shukla, A. K. (2015). Methodological advances: The unsung heroes of the GPCR structural revolution. Nature Reviews Molecular Cell Biology, 16(2), 69–81.

    Article  CAS  PubMed  Google Scholar 

  18. Cherezov, V., Rosenbaum, D. M., Hanson, M. A., Rasmussen, S. G., Thian, F. S., Kobilka, T. S., et al. (2007). High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science, 318(5854), 1258–1265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stevens, R. C., Cherezov, V., Katritch, V., Abagyan, R., Kuhn, P., Rosen, H., et al. (2013). The GPCR network: A large-scale collaboration to determine human GPCR structure and function. Nature Reviews Drug Discovery, 12(1), 25–34.

    Article  CAS  PubMed  Google Scholar 

  20. Carpenter, B., Nehme, R., Warne, T., Leslie, A. G., & Tate, C. G. (2016). Structure of the adenosine A (2A) receptor bound to an engineered G protein. Nature, 536(7614), 104–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kang, Y., Zhou, X. E., Gao, X., He, Y., Liu, W., Ishchenko, A., et al. (2015). Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature, 523(7562), 561–567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rasmussen, S. G., DeVree, B. T., Zou, Y., Kruse, A. C., Chung, K. Y., Kobilka, T. S., et al. (2011). Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature, 477(7366), 549–555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schioth, H. B., & Fredriksson, R. (2005). The GRAFS classification system of G-protein coupled receptors in comparative perspective. General and Comparative Endocrinology, 142(1–2), 94–101.

    Article  PubMed  CAS  Google Scholar 

  24. Pal, K., Melcher, K., & Xu, H. E. (2012). Structure and mechanism for recognition of peptide hormones by class B G-protein-coupled receptors. Acta Pharmacologica Sinica, 33(3), 300–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kniazeff, J., Prezeau, L., Rondard, P., Pin, J. P., & Goudet, C. (2011). Dimers and beyond: The functional puzzles of class C GPCRs. Pharmacology & Therapeutics, 130(1), 9–25.

    Article  CAS  Google Scholar 

  26. Zhang, H., Qiao, A., Yang, D., Yang, L., Dai, A., de Graaf, C., et al. (2017). Structure of the full-length glucagon class B G-protein-coupled receptor. Nature, 546(7657), 259–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang, X., Zhao, F., Wu, Y., Yang, J., Han, G. W., Zhao, S., et al. (2017). Crystal structure of a multi-domain human smoothened receptor in complex with a super stabilizing ligand. Nature Communications, 8, 15383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ballesteros, J. A., & Weinstein, H. (1995). Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. In C. S. Stuart (Ed.), Methods in neurosciences (pp. 366–428). Cambridge, MA: Academic Press.

    Google Scholar 

  29. Isberg, V., de Graaf, C., Bortolato, A., Cherezov, V., Katritch, V., Marshall, F. H., et al. (2015). Generic GPCR residue numbers—Aligning topology maps while minding the gaps. Trends in Pharmacological Sciences, 36(1), 22–31.

    Article  CAS  PubMed  Google Scholar 

  30. Weierstall, U., James, D., Wang, C., White, T. A., Wang, D., Liu, W., et al. (2014). Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nature Communications, 5, 3309.

    Article  PubMed  CAS  Google Scholar 

  31. Johansson, L. C., Stauch, B., Ishchenko, A., & Cherezov, V. (2017). A bright future for serial femtosecond crystallography with XFELs. Trends in Biochemical Sciences, 42(9), 749–762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ishchenko, A., Cherezov, V., & Liu, W. (2016). Preparation and delivery of protein microcrystals in lipidic cubic phase for serial femtosecond crystallography. Journal of Visualized Experiments, 115, e54463.

    Google Scholar 

  33. Liu, W., Ishchenko, A., & Cherezov, V. (2014). Preparation of microcrystals in lipidic cubic phase for serial femtosecond crystallography. Nature Protocols, 9(9), 2123–2134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fenalti, G., Zatsepin, N. A., Betti, C., Giguere, P., Han, G. W., Ishchenko, A., et al. (2015). Structural basis for bifunctional peptide recognition at human delta-opioid receptor. Nature Structural & Molecular Biology, 22(3), 265–268.

    Article  CAS  Google Scholar 

  35. Zhang, H., Unal, H., Gati, C., Han, G. W., Liu, W., Zatsepin, N. A., et al. (2015). Structure of the angiotensin receptor revealed by serial femtosecond crystallography. Cell, 161(4), 833–844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang, H., Han, G. W., Batyuk, A., Ishchenko, A., White, K. L., Patel, N., et al. (2017). Structural basis for selectivity and diversity in angiotensin II receptors. Nature, 544(7650), 327–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Batyuk, A., Galli, L., Ishchenko, A., Han, G. W., Gati, C., Popov, P. A., et al. (2016). Native phasing of x-ray free-electron laser data for a G protein-coupled receptor. Science Advances, 2(9), e1600292.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Ishchenko, A., Wacker, D., Kapoor, M., Zhang, A., Han, G. W., Basu, S., et al. (2017). Structural insights into the extracellular recognition of the human serotonin 2B receptor by an antibody. Proceedings of the National Academy of Sciences of the United States of America, 114(31), 8223–8228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Alexandrov, A. I., Mileni, M., Chien, E. Y., Hanson, M. A., & Stevens, R. C. (2008). Microscale fluorescent thermal stability assay for membrane proteins. Structure, 16(3), 351–359.

    Article  CAS  PubMed  Google Scholar 

  40. Fenalti, G., Abola, E. E., Wang, C., Wu, B., & Cherezov, V. (2015). Fluorescence recovery after photobleaching in lipidic cubic phase (LCP-FRAP): A precrystallization assay for membrane proteins. Methods in Enzymology, 557, 417–437.

    Article  CAS  PubMed  Google Scholar 

  41. Kissick, D. J., Wanapun, D., & Simpson, G. J. (2011). Second-order nonlinear optical imaging of chiral crystals. Annual Review of Analytical Chemistry, 4, 419–437.

    Article  CAS  PubMed  Google Scholar 

  42. Barnes, C. O., Kovaleva, E. G., Fu, X., Stevenson, H. P., Brewster, A. S., DePonte, D. P., et al. (2016). Assessment of microcrystal quality by transmission electron microscopy for efficient serial femtosecond crystallography. Archives of Biochemistry and Biophysics, 602, 61–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhou, X. E., He, Y., de Waal, P. W., Gao, X., Kang, Y., Van Eps, N., et al. (2017). Identification of phosphorylation codes for arrestin recruitment by G protein-coupled receptors. Cell, 170(3), 457–469 e13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Boutet, S., & Williams, G. J. (2010). The coherent X-ray imaging (CXI) instrument at the linac coherent light source (LCLS). New Journal of Physics, 12(3), 035024.

    Article  Google Scholar 

  45. DePonte, D. P., Weierstall, U., Schmidt, K., Warner, J., Starodub, D., Spence, J. C. H., et al. (2008). Gas dynamic virtual nozzle for generation of microscopic droplet streams. Journal of Physics D-Applied Physics, 41(19), 195505.

    Article  CAS  Google Scholar 

  46. Brehm, W., & Diederichs, K. (2014). Breaking the indexing ambiguity in serial crystallography. Acta Crystallographica. Section D, Biological Crystallography, 70(1), 101–109.

    Article  CAS  PubMed  Google Scholar 

  47. Ginn, H. M., Roedig, P., Kuo, A., Evans, G., Sauter, N. K., Ernst, O. P., et al. (2016). TakeTwo: An indexing algorithm suited to still images with known crystal parameters. Acta Crystallographica Section D: Structural Biology, 72(8), 956–965.

    Article  CAS  PubMed Central  Google Scholar 

  48. Mariani, V., Morgan, A., Yoon, C. H., Lane, T. J., White, T. A., O’Grady, C., et al. (2016). OnDA: Online data analysis and feedback for serial X-ray imaging. Journal of Applied Crystallography, 49(3), 1073–1080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sauter, N. K. (2015). XFEL diffraction: Developing processing methods to optimize data quality. Journal of Synchrotron Radiation, 22(2), 239–248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sauter, N. K., Hattne, J., Brewster, A. S., Echols, N., Zwart, P. H., & Adams, P. D. (2014). Improved crystal orientation and physical properties from single-shot XFEL stills. Acta Crystallographica Section D: Biological Crystallography, 70(12), 3299–3309.

    Article  CAS  PubMed Central  Google Scholar 

  51. White, T. A. (2014). Post-refinement method for snapshot serial crystallography. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1647), 20130330.

    Article  PubMed  PubMed Central  Google Scholar 

  52. White, T. A., Mariani, V., Brehm, W., Yefanov, O., Barty, A., Beyerlein, K. R., et al. (2016). Recent developments in CrystFEL. Journal of Applied Crystallography, 49(2), 680–689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu, W., Wacker, D., Gati, C., Han, G. W., James, D., Wang, D., et al. (2013). Serial femtosecond crystallography of G protein-coupled receptors. Science, 342(6165), 1521–1524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wacker, D., Wang, C., Katritch, V., Han, G. W., Huang, X. P., Vardy, E., et al. (2013). Structural features for functional selectivity at serotonin receptors. Science, 340(6132), 615–619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fraser, J. S., van den Bedem, H., Samelson, A. J., Lang, P. T., Holton, J. M., Echols, N., et al. (2011). Accessing protein conformational ensembles using room-temperature X-ray crystallography. Proceedings of the National Academy of Sciences of the United States of America, 108(39), 16247–16252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang, C., Wu, H., Evron, T., Vardy, E., Han, G. W., Huang, X. P., et al. (2014). Structural basis for smoothened receptor modulation and chemoresistance to anticancer drugs. Nature Communications, 5, 4355.

    Article  CAS  PubMed  Google Scholar 

  57. Abdelhamid, E. E., Sultana, M., Portoghese, P. S., & Takemori, A. E. (1991). Selective blockage of delta opioid receptors prevents the development of morphine tolerance and dependence in mice. The Journal of Pharmacology and Experimental Therapeutics, 258(1), 299–303.

    CAS  PubMed  Google Scholar 

  58. Zhang, H., Unal, H., Desnoyer, R., Han, G. W., Patel, N., Katritch, V., et al. (2015). Structural basis for ligand recognition and functional selectivity at angiotensin receptor. The Journal of Biological Chemistry, 290(49), 29127–29139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Guimond, M. O., & Gallo-Payet, N. (2012). How does angiotensin AT(2) receptor activation help neuronal differentiation and improve neuronal pathological situations? Frontiers in Endocrinology, 3, 164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Porrello, E. R., Delbridge, L. M., & Thomas, W. G. (2009). The angiotensin II type 2 (AT2) receptor: An enigmatic seven transmembrane receptor. Frontiers in Bioscience, 14, 958–972.

    Article  CAS  Google Scholar 

  61. Nahmias, C., & Strosberg, A. D. (1995). The angiotensin AT2 receptor: Searching for signal-transduction pathways and physiological function. Trends in Pharmacological Sciences, 16(7), 223–225.

    Article  CAS  PubMed  Google Scholar 

  62. Nouet, S., & Nahmias, C. (2000). Signal transduction from the angiotensin II AT2 receptor. Trends in Endocrinology and Metabolism, 11(1), 1–6.

    Article  CAS  PubMed  Google Scholar 

  63. Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., Motoshima, H., Fox, B. A., et al. (2000). Crystal structure of rhodopsin: A G protein-coupled receptor. Science, 289(5480), 739–745.

    Article  CAS  PubMed  Google Scholar 

  64. Park, J. H., Scheerer, P., Hofmann, K. P., Choe, H. W., & Ernst, O. P. (2008). Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature, 454(7201), 183–187.

    Article  CAS  PubMed  Google Scholar 

  65. Choe, H. W., Kim, Y. J., Park, J. H., Morizumi, T., Pai, E. F., Krauss, N., et al. (2011). Crystal structure of metarhodopsin II. Nature, 471(7340), 651–655.

    Article  CAS  PubMed  Google Scholar 

  66. Hirsch, J. A., Schubert, C., Gurevich, V. V., & Sigler, P. B. (1999). The 2.8 A crystal structure of visual arrestin: A model for arrestin’s regulation. Cell, 97(2), 257–269.

    Article  CAS  PubMed  Google Scholar 

  67. Kim, Y. J., Hofmann, K. P., Ernst, O. P., Scheerer, P., Choe, H. W., & Sommer, M. E. (2013). Crystal structure of pre-activated arrestin p44. Nature, 497(7447), 142–146.

    Article  CAS  PubMed  Google Scholar 

  68. Zhou, X. E., Gao, X., Barty, A., Kang, Y., He, Y., Liu, W., et al. (2016). X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex. Scientific Data, 3, 160021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Siu, F. Y., He, M., de Graaf, C., Han, G. W., Yang, D., Zhang, Z., et al. (2013). Structure of the human glucagon class B G-protein-coupled receptor. Nature, 499(7459), 444–449.

    Article  CAS  PubMed  Google Scholar 

  70. Wang, C., Wu, H., Katritch, V., Han, G. W., Huang, X. P., Liu, W., et al. (2013). Structure of the human smoothened receptor bound to an antitumour agent. Nature, 497(7449), 338–343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nachtergaele, S., Mydock, L. K., Krishnan, K., Rammohan, J., Schlesinger, P. H., Covey, D. F., et al. (2012). Oxysterols are allosteric activators of the oncoprotein smoothened. Nature Chemical Biology, 8(2), 211–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gorojankina, T. (2016). Hedgehog signaling pathway: A novel model and molecular mechanisms of signal transduction. Cellular and Molecular Life Sciences, 73(7), 1317–1332.

    Article  CAS  PubMed  Google Scholar 

  73. Byrne, E. F. X., Sircar, R., Miller, P. S., Hedger, G., Luchetti, G., Nachtergaele, S., et al. (2016). Structural basis of smoothened regulation by its extracellular domains. Nature, 535(7613), 517–522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bortolato, A., Dore, A. S., Hollenstein, K., Tehan, B. G., Mason, J. S., & Marshall, F. H. (2014). Structure of class B GPCRs: New horizons for drug discovery. British Journal of Pharmacology, 171(13), 3132–3145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jazayeri, A., Dore, A. S., Lamb, D., Krishnamurthy, H., Southall, S. M., Baig, A. H., et al. (2016). Extra-helical binding site of a glucagon receptor antagonist. Nature, 533(7602), 274–277.

    Article  CAS  PubMed  Google Scholar 

  76. Hutchings, C. J., Koglin, M., Olson, W. C., & Marshall, F. H. (2017). Opportunities for therapeutic antibodies directed at G-protein-coupled receptors. Nature Reviews Drug Discovery, 16(9), 787–810.

    Article  CAS  PubMed  Google Scholar 

  77. Hay, M., Thomas, D. W., Craighead, J. L., Economides, C., & Rosenthal, J. (2014). Clinical development success rates for investigational drugs. Nature Biotechnology, 32(1), 40–51.

    Article  CAS  PubMed  Google Scholar 

  78. Wang, C., Jiang, Y., Ma, J., Wu, H., Wacker, D., Katritch, V., et al. (2013). Structural basis for molecular recognition at serotonin receptors. Science, 340(6132), 610–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Barends, T. R., Foucar, L., Botha, S., Doak, R. B., Shoeman, R. L., Nass, K., et al. (2014). De novo protein crystal structure determination from X-ray free-electron laser data. Nature, 505(7482), 244–247.

    Article  CAS  PubMed  Google Scholar 

  80. Yamashita, K., Pan, D., Okuda, T., Sugahara, M., Kodan, A., Yamaguchi, T., et al. (2015). An isomorphous replacement method for efficient de novo phasing for serial femtosecond crystallography. Scientific Reports, 5, 14017.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Colletier, J. P., Sawaya, M. R., Gingery, M., Rodriguez, J. A., Cascio, D., Brewster, A. S., et al. (2016). De novo phasing with X-ray laser reveals mosquito larvicide BinAB structure. Nature, 539(7627), 43–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wu, H., Wang, C., Gregory, K. J., Han, G. W., Cho, H. P., Xia, Y., et al. (2014). Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science, 344(6179), 58–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hendrickson, W. A., & Teeter, M. M. (1981). Structure of the hydrophobic protein crambin determined directly from the anomalous scattering of sulphur. Nature, 290(5802), 107–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nass, K., Meinhart, A., Barends, T. R., Foucar, L., Gorel, A., Aquila, A., et al. (2016). Protein structure determination by single-wavelength anomalous diffraction phasing of X-ray free-electron laser data. IUCrJ, 3(3), 180–191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fenalti, G., Giguere, P. M., Katritch, V., Huang, X. P., Thompson, A. A., Cherezov, V., et al. (2014). Molecular control of delta-opioid receptor signalling. Nature, 506(7487), 191–196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Liu, W., Chun, E., Thompson, A. A., Chubukov, P., Xu, F., Katritch, V., et al. (2012). Structural basis for allosteric regulation of GPCRs by sodium ions. Science, 337(6091), 232–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Weinert, T., Olieric, N., Cheng, R., Brunle, S., James, D., Ozerov, D., et al. (2017). Serial millisecond crystallography for routine room-temperature structure determination at synchrotrons. Nature Communications, 8(1), 542.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Hart, P., Boutet, S., Carini, G., Dragone, A., Duda, B., Freytag, D., et al. (2012). The cornell-SLAC pixel array detector at LCLS. Presented at 2012 Nuclear Science Symposium, Medical Imaging Conference Anaheim, CA. SLAC-PUB-15284.

    Google Scholar 

  89. Barty, A., Kirian, R. A., Maia, F. R. N. C., Hantke, M., Yoon, C. H., White, T. A., et al. (2014). Cheetah: Software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data. Journal of Applied Crystallography, 47(3), 1118–1131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. White, T. A., Kirian, R. A., Martin, A. V., Aquila, A., Nass, K., Barty, A., et al. (2012). CrystFEL: A software suite for snapshot serial crystallography. Journal of Applied Crystallography, 45(2), 335–341.

    Article  CAS  Google Scholar 

  91. Conrad, C. E., Basu, S., James, D., Wang, D., Schaffer, A., Roy-Chowdhury, S., et al. (2015). A novel inert crystal delivery medium for serial femtosecond crystallography. IUCrJ, 2(4), 421–430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Weierstall, U. (2014). Liquid sample delivery techniques for serial femtosecond crystallography. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1647), 20130337.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Latorraca, N. R., Venkatakrishnan, A. J., & Dror, R. O. (2017). GPCR dynamics: Structures in motion. Chemical Reviews, 117(1), 139–155.

    Article  CAS  PubMed  Google Scholar 

  94. Congreve, M., Dias, J. M., & Marshall, F. H. (2014). Chapter one - structure-based drug design for G protein-coupled receptors. In G. Lawton & D. R. Witty (Eds.), Progress in medicinal chemistry (pp. 1–63). New York: Elsevier.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim Cherezov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stauch, B., Johansson, L., Ishchenko, A., Han, G.W., Batyuk, A., Cherezov, V. (2018). Advances in Structure Determination of G Protein-Coupled Receptors by SFX. In: Boutet, S., Fromme, P., Hunter, M. (eds) X-ray Free Electron Lasers. Springer, Cham. https://doi.org/10.1007/978-3-030-00551-1_10

Download citation

Publish with us

Policies and ethics