Skip to main content

Introduction to Block-oriented Nonlinear Systems

  • Chapter
Block-oriented Nonlinear System Identification

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 404))

Abstract

System identification refers to the experimental approach that consists of determining system models by fitting experimental data to a suitable model structure [14] in some optimal ways. Linear model structures can be based upon when the physical system remains in the vicinity of a nominal operation point so that the linearity assumption is satisfied. When a wide range of operation modes are involved, the linear assumption may not be valid and a nonlinear model structure becomes necessary to capture the system (nonlinear) behaviour. In relatively simple cases, suitable nonlinear model structures are obtained using the mathematical modelling approach that consists of describing the system phenomena using basic laws of physics, chemistry, etc. Then, system identification methods may be resorted to assign suitable numerical values to the (unknown) model parameters. When the mathematical modelling approach is insufficient, system identification must rely on ‘universal’ black-box or grey-box nonlinear model structures. These include NARMAX models [9], multi-model representations [15], neuro-fuzzy models [3], Volterra series [19], non-parametric models [14] and others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balestrino, A., Landi, A., Ould-Zmirli, M., Sani, L.: Automatic nonlinear auto-tuning method for Hammerstein modeling of electrical drives. IEEE Transactions on Industrial Electronics 48, 645–655 (2001)

    Article  Google Scholar 

  2. Boyd, S., Chua, L.O.: Fading memory and the problem of approximating nonlinear operators with Volterra series. IEEE Transactions on Circuits and Systems 32, 1150–1161 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brown, M., Harris, H.C.: Neurofuzzy adaptive modelling and control. Prentice Hall, New Jersey (1994)

    Google Scholar 

  4. Dempsey, E., Westwick, D.: Identification of Hammerstein models with cubic spline nonlinearities. IEEE Transactions on Biomedical Engineering 51, 237–245 (2004)

    Article  Google Scholar 

  5. Eskinat, E., Johnson, S., Luyben, W.L.: Use of Hammerstein models in identification of nonlinear systems. AIChE Journal 37, 255–268 (1991)

    Article  Google Scholar 

  6. Hammerstein, A.: Nichtlineare integralgleichung nebst anwendungen. Acta Mathematica 54, 117–176 (1930)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hunt, K.J., Munih, M., Donaldson, N.D., Barr, F.M.D.: Investigation of the Hammerstein hypothesis in the modeling of electrically stimulated muscle. IEEE Transactions on Biomedical Engineering 45, 998–1009 (1998)

    Article  Google Scholar 

  8. Hunter, I.W., Korenberg, M.J.: The identification of nonlinear biological systems: Wiener and Hammerstein cascade models. Biological Cybernetics 55, 135–144 (1986)

    MATH  MathSciNet  Google Scholar 

  9. Johansen, T.A., Foss, B.A.: Constructing NARMAX models using ARMAX models. International Journal of Control 58, 1125–1153 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  10. Jurado, F.: A method for the identification of solid oxide fuel cells using a Hammerstein model. Journal of Power Sources 154, 145–152 (2006)

    Article  Google Scholar 

  11. Kalafatis, A., Wang, L., Cluett, W.R.: Identification of time-varying pH processes using sinusoidal signals. Automatica 41, 685–691 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kim, J., Konstantinou, K.: Digital predistortion of wideband signals based on power amplifier model with memory. IEE Electronics Letters 37, 1417–1418 (2001)

    Article  Google Scholar 

  13. Lee, Y.J., Sung, S.W., Park, S., Park, S.: Input test signal design and parameter estimation method for the Hammerstein–Wiener processes. Industrial and Engineering Chemistry Research 43, 7521–7530 (2004)

    Article  Google Scholar 

  14. Ljung, L.: System identification: Theory for the user. Prentice-Hall, Englewood Cliffs (1999)

    Google Scholar 

  15. Murray-Smith, R., Johansen, T.A.: Multiple model approaches to modelling and control. Taylor & Francis, London (1997)

    Google Scholar 

  16. Palanthandalam-Madapusi, H.J., Ridley, A.J., Bernstein, D.S.: Identification and prediction of ionospheric dynamics using a Hammerstein–Wiener model with radial basis functions. In: American Control Conference, Portland, OR, USA, pp. 5052–5057 (2005)

    Google Scholar 

  17. Palanthandalam-Madapusi, H.J., Bernstein, D.S., Ridley, A.J.: Space Weather Forecasting: Identifying periodically switching block-structured models for predicting magnetic-field fluctuations. IEEE Control Systems Magazine 27, 109–123 (2007)

    Article  MathSciNet  Google Scholar 

  18. Park, H.C., Sung, S.W., Lee, J.: Modeling of Hammerstein–Wiener processes with special input test signals. Industrial and Engineering Chemistry Research 45, 1029–1038 (2006)

    Article  Google Scholar 

  19. Schetzen, M.: The Volterra and Wiener theories of non-linear systems. Krieger Publishing Co. (1980), (reprint Edition with Additional Material, Malabar, Fla)

    Google Scholar 

  20. Srinivasan, R., Rengaswamy, R., Narasimhan, S., Miller, R.: Control loop performance assessment - Hammerstein model approach for stiction diagnosis. Industrial and Engineering Chemistry Research 44, 6719–6728 (2005)

    Article  Google Scholar 

  21. Sung, S.: System identification method for Hammerstein processes. Industrial and Engineering Chemistry Research 41, 4295–4302 (2002)

    Article  Google Scholar 

  22. Wang, J., Sano, A., Chen, T., Huang, B.: Identification of Hammerstein systems without explicit parameterization of nonlinearity. International Journal of Control 82, 937–952 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Wiener, N.: Nonlinear problems in random theory. Wiley, New York (1958)

    MATH  Google Scholar 

  24. Zhu, Y.: Distillation column identification for control using Wiener model. In: American Control Conference, San Diego, California, vol. 5, pp. 3462–3466 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer London

About this chapter

Cite this chapter

Bai, EW., Giri, F. (2010). Introduction to Block-oriented Nonlinear Systems. In: Giri, F., Bai, EW. (eds) Block-oriented Nonlinear System Identification. Lecture Notes in Control and Information Sciences, vol 404. Springer, London. https://doi.org/10.1007/978-1-84996-513-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-513-2_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-512-5

  • Online ISBN: 978-1-84996-513-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics