Skip to main content

Part of the book series: Fields Institute Communications ((FIC,volume 83))

Abstract

The most famous completely integrable PDEs—KdV and 1D cubic NLS—do not display any kind of wave turbulence, since the conservation laws control high regularity, making impossible the long time appearance of small scales. In this course, I will discuss a new type of integrable infinite-dimensional system, posed on functions of one variable, allowing dramatic growth of high Sobolev norms. The analysis is connected to the solution of an inverse spectral problem for Hankel operators from classical analysis. I will also discuss how this phenomenon can be exported to some Hamiltonian PDEs which can be seen as perturbations of this new type of integrable system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the sake of brevity, we assume here without further explanation that \(\mathcal {C}(z)\) is invertible. See Sect. 4.3.1 for a proof of this non-trivial fact.

  2. 2.

    In fact u is even an analytic function on \({\mathbb T} \).

  3. 3.

    Where \(\mathcal {C}^\infty _+(\mathbb {T}):=\mathcal {C}^\infty (\mathbb {T})\cap L^2_+\).

  4. 4.

    In view of the Lax pair for K u, this estimate is also valid for Eq. (4.20).

  5. 5.

    In view of the Lax pair for K u, this estimate is also valid for Eq. (4.20).

References

  1. J. Bourgain. Problems in Hamiltonian PDE’s. Geom. Funct. Anal., (Special Volume, Part I):32–56, 2000. GAFA 2000 (Tel Aviv, 1999).

    Google Scholar 

  2. P. Gérard and S. Grellier. The cubic Szegő equation. Ann. Sci. Éc. Norm. Supér. (4), 43(5):761–810, 2010.

    Article  MathSciNet  Google Scholar 

  3. P. Gérard and S. Grellier. Effective integrable dynamics for a certain nonlinear wave equation. Anal. PDE, 5(5):1139–1155, 2012.

    Article  MathSciNet  Google Scholar 

  4. P. Gérard and S. Grellier. Invariant tori for the cubic Szegö equation. Inventiones mathematicae, 187(3):707–754, 2012.

    Article  MathSciNet  Google Scholar 

  5. P. Gérard and S. Grellier. An explicit formula for the cubic Szegő equation. Transactions of the American Mathematical Society, 367(4):2979–2995, 2015.

    Article  MathSciNet  Google Scholar 

  6. P. Gérard and S. Grellier. The cubic Szegő equation and Hankel operators, volume 389 of Astérisque. Société mathématique de France, 2017.

    Google Scholar 

  7. P. Gérard, E. Lenzmann, O. Pocovnicu, and P. Raphaël. A two-soliton with transient turbulent regime for the cubic half-wave equation on the real line. Ann. PDE 4(1), Art. 7, 2018.

    Google Scholar 

  8. Z. Hani. Long-time instability and unbounded Sobolev orbits for some periodic nonlinear Schrödinger equations. Arch. Ration. Mech. Anal., 211(3):929–964, 2014.

    Article  MathSciNet  Google Scholar 

  9. Z. Hani, B. Pausader, N. Tzvetkov, and N. Visciglia. Almost sure global well-posedness for fractional cubic Schrödinger equation on torus. Forum Math. Pi3, 2015.

    Google Scholar 

  10. J. Krieger, E. Lenzmann, and P. Raphaël. Nondispersive solutions to the l2-critical half- wave equation. Arch. Ration. Mech. Anal., 209(1):61–129, 2013.

    Article  MathSciNet  Google Scholar 

  11. P. D. Lax. Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math., 21:467–490, 1968.

    Article  MathSciNet  Google Scholar 

  12. A Majda, D. McLaughlin, and E. Tabak. A one dimensional model for dispersive wave turbulence. Nonlinear Science, 6:9–44, 1997.

    Article  MathSciNet  Google Scholar 

  13. V. Peller. Hankel operators and their applications. Springer Science & Business Media, 2012.

    Google Scholar 

  14. O. Pocovnicu. Explicit formula for the solution of the szegő equation on the real line and applications. Discrete Contin. Dyn. Syst. A, 31(3):607–649, 2011.

    Article  MathSciNet  Google Scholar 

  15. O. Pocovnicu. Traveling waves for the cubic szegő equation on the real line. Anal. PDE, 4(3):379–404, 2011.

    Article  MathSciNet  Google Scholar 

  16. J. Thirouin. On the growth of Sobolev norms of solutions of the fractional defocusing NLS equation on the circle. Annales de l’Institut Henri Poincaré (C), Nonlinear Analysis, 34(509–531), 2016.

    Article  MathSciNet  Google Scholar 

  17. H. Xu. Large time blowup for a perturbation of the cubic Szegő equation. Analysis & PDE, 7(3):717–731, 2014.

    Article  MathSciNet  Google Scholar 

  18. H. Xu. The cubic Szegő equation with a linear perturbation. Preprint, arXiv:1508.01500, August 2015.

    Google Scholar 

  19. H. Xu. Unbounded sobolev trajectories and modified scattering theory for a wave guide nonlinear schrödinger equation. Mathematische Zeitschrift, 286(1–2):443–489, 2017.

    Article  MathSciNet  Google Scholar 

  20. V. E. Zakharov and A. B. Shabat. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Ž. Èksper. Teoret. Fiz., 61(1):118–134, 1971.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Gérard .

Editor information

Editors and Affiliations

Appendix A: The L ∞ Estimate and Its Consequences

Appendix A: The L Estimate and Its Consequences

In this section, we show how the lax pair structure leads to the following a priori estimate for solutions of the cubic Szegő equation.Footnote 4

Theorem A.15 ([2])

Assume \(u_0\in H^s_+\) for some s > 1. Then the corresponding solution u of the cubic Szegő equation satisfies

$$\displaystyle \begin{aligned}\sup_{t\in {\mathbb R}}\Vert u(t)\Vert _{L^\infty}<+\infty \ .\end{aligned}$$

The proof of this theorem relies on the following proposition.

Proposition A.1

Given \(u\in H^{\frac 12}_+\), we denote by {s j(u)}j≥1 the sequence of singular values of H u, repeated according to multiplicity. The following double inequality holds:

$$\displaystyle \begin{aligned}\frac 12\sum _{n=0}^\infty \vert \hat u(n)\vert \le \sum _{j=1}^\infty s_j(u)\le \sum _{n=0}^\infty \left (\sum _{\ell =0}^\infty \vert \hat u(n+\ell )\vert ^2\right )^{\frac 12}\end{aligned}$$

Furthermore, the right hand side is controlled by

$$\displaystyle \begin{aligned} C_s\Vert u\Vert _{H^s}\end{aligned}$$

for every s > 1.

Remark A.3

This proposition can be interpreted as a double inequality for the trace norm of the Hankel operator H u. A more complete characterization of functions u such that the trace norm of H u is finite is given in Peller [13]. Here we provide an elementary proof.

Assuming the proposition, let us show the theorem. From the second equality in the proposition, we have

$$\displaystyle \begin{aligned}\sum_{j=1}^\infty s_j(u_0)<+\infty .\end{aligned}$$

Since each s j(u) is a conservation law, we have, for every \(t\in {\mathbb R}\),

$$\displaystyle \begin{aligned}\sum_{j=1}^\infty s_j(u(t))=\sum_{j=1}^\infty s_j(u_0).\end{aligned}$$

Finally, by the first inequality in the proposition,

$$\displaystyle \begin{aligned}\sup_{t\in {\mathbb R}}\sum_{n\ge 0}\vert \hat u(t,n)\vert \le 2\ \sup_{t\in{\mathbb R}}\sum_{j=1}^\infty s_j(u(t))=2\sum_{j=1}^\infty s_j(u_0).\end{aligned}$$

The proof is completed by the elementary observation that

$$\displaystyle \begin{aligned}\Vert u\Vert_{L^\infty}\le \sum_{n\ge0}\vert \hat u(n)\vert .\end{aligned}$$

We now pass to the proof of the proposition.

Proof of Proposition A.1

We denote by {e j}j≥1 an orthonormal basis of \(\overline { \operatorname {\mathrm {Ran}}(H_u)}=\overline { \operatorname {\mathrm {Ran}}(H_u^2)}\) such that \(H_u^2e_j=s_j^2u\). Such a basis exists because \(H_u^2\) is a compact selfadjoint operator. Notice that

$$\displaystyle \begin{aligned}\Vert H_u(e_j)\Vert ^2=(H_u^2(e_j)\vert e_j)=s_j^2.\end{aligned}$$

We set, for every n ≥ 0, ε n(x) = e inx.

Let us prove the first inequality. Observe that

$$\displaystyle \begin{aligned}\hat u(2n)=(H_u(\varepsilon _n)\vert \varepsilon _n),\ \hat u(2n+1)=K_u(\varepsilon _n\vert \varepsilon_n).\end{aligned}$$

On the other hand,

$$\displaystyle \begin{aligned}(H_u(\varepsilon _n)\vert \varepsilon_n)=\sum _j(H_u(\varepsilon_n)\vert e_j)(e_j\vert \varepsilon_n),\end{aligned}$$

and (H u(ε n)|e j) = (H u(e j)|ε n), so that

$$\displaystyle \begin{aligned} \begin{array}{rcl} \sum_{n=0}^\infty \vert \hat u(2n)\vert &\displaystyle \le &\displaystyle \sum_{n,j}\vert (H_u(e_j)\vert \varepsilon_n)(e_j\vert \varepsilon_n)\vert \\ &\displaystyle \le &\displaystyle \sum_j\left (\sum_{n=0}^\infty \vert (H_u(e_j)\vert \varepsilon_n)\vert^2 \right )^{\frac 12}\left (\sum_{n=0}^\infty \vert (e_j\vert \varepsilon_n)\vert^2 \right )^{\frac 12}\\ &\displaystyle =&\displaystyle \sum_j\Vert H_u(e_j)\Vert \Vert e_j\Vert =\sum_js_j . \end{array} \end{aligned} $$

Arguing similarly with K u, we obtain

$$\displaystyle \begin{aligned}\sum_{n=0}^\infty \vert \hat u(2n+1)\vert \le \sum_ks^{\prime}_k .\end{aligned}$$

Summing up, we have proved

$$\displaystyle \begin{aligned}\sum _{n=0}^\infty \vert \hat u(n)\vert \leq \sum_js_j+\sum_ks^{\prime}_k\le 2\sum_js_j .\end{aligned}$$

We now pass to the second inequality. Notice that

$$\displaystyle \begin{aligned}(H_u(e _j), H_u(e _{j'}))=(H_u^2(e _{j'}), e _j)=s _{j}^2\delta _{jj'}.\end{aligned}$$

In other words, the sequence {H u(e j)∕s j} is orthonormal. We then define the following antilinear operator on \(L^2_+\),

$$\displaystyle \begin{aligned}\Omega _u(h)=\sum _j (e _j, h)\frac{H_u(e_j)}{s_j}.\end{aligned}$$

Notice that, due to the orthonormality of both systems {e j} and {H u(e j)∕s j}, ∥ Ωu(h)∥≤∥h∥. Similarly, we define

$$\displaystyle \begin{aligned}^t\Omega _u(h)=\sum _j \frac{(H_u(e _j), h)}{s_j}e_j,\end{aligned}$$

so that

$$\displaystyle \begin{aligned}\forall h,h'\in L^2_+,\quad (\Omega _u(h)\vert h')=({}^t\Omega _u(h')\vert h).\end{aligned}$$

We next observe that

$$\displaystyle \begin{aligned} \begin{array}{rcl} s_j&\displaystyle =&\displaystyle (H_u(e_j)\vert \Omega _u(e_j))=\sum_{n=0}^\infty (H_u(e_j)\vert \varepsilon_n)(\varepsilon_n\vert \Omega _u(e_j))\\ &\displaystyle =&\displaystyle \sum_{n=0}^\infty \sum_{\ell =0}^\infty \hat u(n+\ell)(\varepsilon_\ell \vert e_j)(\varepsilon_n\vert \Omega _u(e_j))\\ \end{array} \end{aligned} $$

But using the transpose of Ωu, we get

$$\displaystyle \begin{aligned}\sum_j(\varepsilon_\ell\vert e_j)(\varepsilon_n\vert \Omega_u(e_j))=\sum_j(\varepsilon_\ell\vert e_j)(e_j\vert ^t\Omega _u(\varepsilon_n))=(\varepsilon_\ell \vert ^t\Omega_u(\varepsilon_n))=(\varepsilon_n \vert \Omega _u(\varepsilon_\ell)).\end{aligned}$$

Consequently,

$$\displaystyle \begin{aligned}\sum_js_j=\sum_{n,\ell\ge 0}\hat u(n+\ell)(\varepsilon_n \vert \Omega _u(\varepsilon_\ell)).\end{aligned}$$

Applying the Cauchy–Schwarz inequality to the sum on , we infer

$$\displaystyle \begin{aligned}\sum_js_j\le \sum _{n=0}^\infty \Vert \Omega _u(\varepsilon _\ell)\Vert \left (\sum _{\ell =0}^\infty \vert \hat u(k+\ell )\vert ^2\right )^{\frac 12},\end{aligned}$$

and the claim follows from the fact that ∥ Ωu(ε )∥≤∥ε ∥ = 1.

We finally need to control the right hand side of this last inequality. By the Cauchy–Schwarz inequality in the n sum, we have, for every s > 1,

$$\displaystyle \begin{aligned} \begin{array}{rcl} \sum _{n=0}^\infty \left (\sum _{\ell =0}^\infty \vert \hat u(n+\ell )\vert ^2\right )^{\frac 12}&\displaystyle \le &\displaystyle \left (\sum _{n=0}^\infty (1+n)^{1-2s}\right )^{\frac 12} \left (\sum _{n,\ell \ge 0}(1+n)^{2s-1}\vert \hat u(n+\ell )\vert ^2\right )^{\frac 12} \\ &\displaystyle \le &\displaystyle \left (\frac{s}{s-1}\right )^{\frac 12} \left (\sum _{n,\ell \ge 0}(1+n+\ell )^{2s-1}\vert \hat u(n+\ell )\vert ^2\right )^{\frac 12}\\ &\displaystyle \le &\displaystyle C_s\Vert u\Vert_{H^s}, \end{array} \end{aligned} $$

and Proposition A.1 is proved. □

Corollary A.2

For s > 1 and \(u_0\in H_+^s\), the corresponding solution tu(t) of the Szegő equation Footnote 5 satisfies

$$\displaystyle \begin{aligned} \|u(t)\|{}_{H^s}\leq C_se^{C^{\prime}_s|t|},\quad \forall t\in\mathbb{R},\end{aligned}$$

where C s, \(C^{\prime }_s\) are positive constants which only depend on s and \(\|u_0\|{ }_{H^s}\).

Proof

We compute \(\frac {d}{dt}\|D^su(t)\|{ }_{L^2}^2\) and use the boundedness of the L norm to write

$$\displaystyle \begin{aligned} \left| \frac{d}{dt}\|D^su(t)\|{}_{L^2}^2\right| \leq C \|u\|{}_{H^s}^2,\end{aligned}$$

for an appropriate constant C depending on the norm of u 0 in \(H^s_+\). A Gronwall inequality then completes the proof of the corollary. □

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gérard, P. (2019). Wave Turbulence and Complete Integrability. In: Miller, P., Perry, P., Saut, JC., Sulem, C. (eds) Nonlinear Dispersive Partial Differential Equations and Inverse Scattering. Fields Institute Communications, vol 83. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9806-7_2

Download citation

Publish with us

Policies and ethics