Skip to main content

Transcriptomic Approaches for Muscle Biology and Disorders

  • Chapter
  • First Online:
Omics Approaches to Understanding Muscle Biology

Part of the book series: Methods in Physiology ((METHPHYS))

  • 569 Accesses

Abstract

Transcriptomics approaches have been advancing quickly in the past 20 years. Technologies including various arrays and sequencing technologies are used to determine expression of RNA transcripts in cells and tissues. While the earlier approaches focus on the messenger RNA (mRNA), all other types of RNA transcripts, such as micro RNAs and non-coding RNAs, can be easily studied using current approaches. For skeletal muscle research, investigators use transcriptomics approaches to study basic muscle biology; molecular responses to physiological and environmental stimuli; effects of aging on muscles; disease mechanism of muscle disorders; molecular changes in muscles of non-muscle diseases; and molecular responses to therapeutic. This chapter focuses on current approaches and platforms used in the studies. Platform selections and limitations as well as data analysis will be discussed. Emerging approaches such as single cell profiling, single nucleus profiling, modified RNA profiling, and spatial transcription profiling are described in the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, Z., et al. (2018). Systematic transcriptome-wide analysis of mRNA-miRNA interactions reveals the involvement of miR-142-5p and its target (FOXO3) in skeletal muscle growth in chickens. Molecular Genetics and Genomics: MGG, 293, 69–80. https://doi.org/10.1007/s00438-017-1364-7.

    Article  CAS  PubMed  Google Scholar 

  2. Li, R., et al. (2019). Characterization and expression profiles of muscle transcriptome in Schizothoracine fish, Schizothorax prenanti. Gene, 685, 156–163. https://doi.org/10.1016/j.gene.2018.10.070.

    Article  CAS  PubMed  Google Scholar 

  3. Cote, L. E., Simental, E., & Reddien, P. W. (2019). Muscle functions as a connective tissue and source of extracellular matrix in planarians. Nature Communications, 10, 1592. https://doi.org/10.1038/s41467-019-09539-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Burniston, J. G., et al. (2013). Gene expression profiling of gastrocnemius of “minimuscle” mice. Physiological Genomics, 45, 228–236. https://doi.org/10.1152/physiolgenomics.00149.2012. physiolgenomics.00149.2012 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pietu, G., et al. (1996). Novel gene transcripts preferentially expressed in human muscles revealed by quantitative hybridization of a high density cDNA array. Genome Research, 6, 492–503.

    Article  CAS  PubMed  Google Scholar 

  6. Chen, Y. W., Hubal, M. J., Hoffman, E. P., Thompson, P. D., & Clarkson, P. M. (2003). Molecular responses of human muscle to eccentric exercise. Journal of Applied Physiology, 95, 2485–2494.

    Article  CAS  PubMed  Google Scholar 

  7. Chen, Y. W., et al. (2002). Response of rat muscle to acute resistance exercise defined by transcriptional and translational profiling. The Journal of Physiology, 545, 27–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bonafiglia, J. T., Menzies, K. J., & Gurd, B. J. (2019). Gene expression variability in human skeletal muscle transcriptome responses to acute resistance exercise. Experimental Physiology, 104, 625–629. https://doi.org/10.1113/EP087436.

    Article  CAS  PubMed  Google Scholar 

  9. Turner, D. C., Seaborne, R. A., & Sharples, A. P. (2019). Comparative transcriptome and methylome analysis in human skeletal muscle anabolism, hypertrophy and epigenetic memory. Scientific Reports, 9, 4251. https://doi.org/10.1038/s41598-019-40787-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dickinson, J. M., et al. (2018). Transcriptome response of human skeletal muscle to divergent exercise stimuli. Journal of Applied Physiology (1985), 124, 1529–1540. https://doi.org/10.1152/japplphysiol.00014.2018.

    Article  CAS  Google Scholar 

  11. Mahmassani, Z. S., et al. (2019). Age-dependent skeletal muscle transcriptome response to bed rest-induced atrophy. Journal of Applied Physiology (1985), 126, 894–902. https://doi.org/10.1152/japplphysiol.00811.2018.

    Article  CAS  Google Scholar 

  12. Vechin, F. C., et al. (2019). Low-intensity resistance training with partial blood flow restriction and high-intensity resistance training induce similar changes in skeletal muscle transcriptome in elderly humans. Applied Physiology, Nutrition, and Metabolism = Physiologie appliquee, nutrition et metabolisme, 44, 216–220. https://doi.org/10.1139/apnm-2018-0146.

    Article  CAS  PubMed  Google Scholar 

  13. Chen, Y. W., et al. (2005). Early onset of inflammation and later involvement of TGFbeta in Duchenne muscular dystrophy. Neurology, 65, 826–834.

    Article  CAS  PubMed  Google Scholar 

  14. Dadgar, S., et al. (2014). Asynchronous remodeling is a driver of failed regeneration in Duchenne muscular dystrophy. The Journal of Cell Biology, 207, 139–158. https://doi.org/10.1083/jcb.201402079. jcb.201402079 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sharma, V., Harafuji, N., Belayew, A., & Chen, Y. W. (2013). DUX4 differentially regulates transcriptomes of human rhabdomyosarcoma and mouse C2C12 cells. PLoS One, 8, e64691. https://doi.org/10.1371/journal.pone.0064691. PONE-D-13-08552 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dixit, M., et al. (2007). DUX4, a candidate gene of facioscapulohumeral muscular dystrophy, encodes a transcriptional activator of PITX1. Proceedings of the National Academy of Sciences of the United States of America, 104, 18157–18162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, E. T., et al. (2019). Transcriptome alterations in myotonic dystrophy skeletal muscle and heart. Human Molecular Genetics, 28, 1312–1321. https://doi.org/10.1093/hmg/ddy432.

    Article  CAS  PubMed  Google Scholar 

  18. Chen, Y. W., Zhao, P., Borup, R., & Hoffman, E. P. (2000). Expression profiling in the muscular dystrophies: Identification of novel aspects of molecular pathophysiology. The Journal of Cell Biology, 151, 1321–1336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, N., et al. (2018). Dynamic transcriptome profile in db/db skeletal muscle reveal critical roles for long noncoding RNA regulator. The International Journal of Biochemistry and Cell Biology, 104, 14–24. https://doi.org/10.1016/j.biocel.2018.08.013.

    Article  CAS  PubMed  Google Scholar 

  20. Scott, L. J., et al. (2016). The genetic regulatory signature of type 2 diabetes in human skeletal muscle. Nature Communications, 7, 11764. https://doi.org/10.1038/ncomms11764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gallagher, I. J., et al. (2012). Suppression of skeletal muscle turnover in cancer cachexia: Evidence from the transcriptome in sequential human muscle biopsies. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 18, 2817–2827. https://doi.org/10.1158/1078-0432.CCR-11-2133.

    Article  CAS  Google Scholar 

  22. Chen, Y. W., et al. (2017). Molecular signatures of differential responses to exercise trainings during rehabilitation. Biomedical Genetics and Genomics, 2. https://doi.org/10.15761/BGG.1000127.

  23. Boehler, J. F., et al. (2017). Effect of endurance exercise on microRNAs in myositis skeletal muscle—A randomized controlled study. PLoS One, 12, e0183292. https://doi.org/10.1371/journal.pone.0183292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Benoit, B., et al. (2017). Fibroblast growth factor 19 regulates skeletal muscle mass and ameliorates muscle wasting in mice. Nature Medicine, 23, 990–996. https://doi.org/10.1038/nm.4363.

    Article  CAS  PubMed  Google Scholar 

  25. Wu, J., et al. (2014). Ribogenomics: The science and knowledge of RNA. Genomics, Proteomics and Bioinformatics, 12, 57–63. https://doi.org/10.1016/j.gpb.2014.04.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Varemo, L., et al. (2016). Proteome- and transcriptome-driven reconstruction of the human myocyte metabolic network and its use for identification of markers for diabetes. Cell Reports, 14, 1567. https://doi.org/10.1016/j.celrep.2016.01.054.

    Article  CAS  PubMed  Google Scholar 

  27. Lundberg, E., et al. (2010). Defining the transcriptome and proteome in three functionally different human cell lines. Molecular Systems Biology, 6, 450. https://doi.org/10.1038/msb.2010.106.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Vogel, C., & Marcotte, E. M. (2012). Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nature Reviews. Genetics, 13, 227–232. https://doi.org/10.1038/nrg3185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nie, L., Wu, G., Brockman, F. J., & Zhang, W. (2006). Integrated analysis of transcriptomic and proteomic data of Desulfovibrio vulgaris: Zero-inflated Poisson regression models to predict abundance of undetected proteins. Bioinformatics, 22, 1641–1647. https://doi.org/10.1093/bioinformatics/btl134.

    Article  CAS  PubMed  Google Scholar 

  30. Greenbaum, D., Colangelo, C., Williams, K., & Gerstein, M. (2003). Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biology, 4, 117. https://doi.org/10.1186/gb-2003-4-9-117.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Margulies, M., et al. (2005). Genome sequencing in microfabricated high-density picolitre reactors. Nature, 437, 376–380. https://doi.org/10.1038/nature03959.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Heather, J. M., & Chain, B. (2016). The sequence of sequencers: The history of sequencing DNA. Genomics, 107, 1–8. https://doi.org/10.1016/j.ygeno.2015.11.003.

    Article  CAS  PubMed  Google Scholar 

  33. Schena, M., Shalon, D., Davis, R. W., & Brown, P. O. (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270, 467–470.

    Article  CAS  PubMed  Google Scholar 

  34. DeRisi, J., et al. (1996). Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nature Genetics, 14, 457–460. https://doi.org/10.1038/ng1296-457.

    Article  CAS  PubMed  Google Scholar 

  35. Dalma-Weiszhausz, D. D., Warrington, J., Tanimoto, E. Y., & Miyada, C. G. (2006). The affymetrix GeneChip platform: An overview. Methods in Enzymology, 410, 3–28. https://doi.org/10.1016/S0076-6879(06)10001-4.

    Article  CAS  PubMed  Google Scholar 

  36. Kostek, M. C., et al. (2007). Gene expression responses over 24 h to lengthening and shortening contractions in human muscle: Major changes in CSRP3, MUSTN1, SIX1, and FBXO32. Physiological Genomics, 31, 42–52.

    Article  CAS  PubMed  Google Scholar 

  37. Borup, R. H., et al. (2002). Development and production of an oligonucleotide MuscleChip: Use for validation of ambiguous ESTs. BMC Bioinformatics, 3, 33.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fan, J. B., et al. (2006). Illumina universal bead arrays. Methods in Enzymology, 410, 57–73. https://doi.org/10.1016/S0076-6879(06)10003-8.

    Article  CAS  PubMed  Google Scholar 

  39. Kotorashvili, A., et al. (2012). Effective DNA/RNA co-extraction for analysis of microRNAs, mRNAs, and genomic DNA from formalin-fixed paraffin-embedded specimens. PLoS One, 7, e34683. https://doi.org/10.1371/journal.pone.0034683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kibriya, M. G., et al. (2010). Analyses and interpretation of whole-genome gene expression from formalin-fixed paraffin-embedded tissue: An illustration with breast cancer tissues. BMC Genomics, 11, 622. https://doi.org/10.1186/1471-2164-11-622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wolber, P. K., Collins, P. J., Lucas, A. B., De Witte, A., & Shannon, K. W. (2006). The agilent in situ-synthesized microarray platform. Methods in Enzymology, 410, 28–57. https://doi.org/10.1016/S0076-6879(06)10002-6.

    Article  CAS  PubMed  Google Scholar 

  42. Wu, L., Brady, L., Shoffner, J., & Tarnopolsky, M. A. (2018). Next-generation sequencing to diagnose muscular dystrophy, rhabdomyolysis, and HyperCKemia. The Canadian Journal of Neurological Sciences. Le journal canadien des sciences neurologiques, 45, 262–268. https://doi.org/10.1017/cjn.2017.286.

    Article  PubMed  Google Scholar 

  43. Nigro, V., & Piluso, G. (2012). Next generation sequencing (NGS) strategies for the genetic testing of myopathies. Acta myologica: Myopathies and Cardiomyopathies: Official Journal of the Mediterranean Society of Myology, 31, 196–200.

    CAS  Google Scholar 

  44. Hestand, M. S., et al. (2010). Tissue-specific transcript annotation and expression profiling with complementary next-generation sequencing technologies. Nucleic Acids Research, 38, e165. https://doi.org/10.1093/nar/gkq602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Colangelo, V., et al. (2014). Next-generation sequencing analysis of miRNA expression in control and FSHD myogenesis. PLoS One, 9, e108411. https://doi.org/10.1371/journal.pone.0108411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cardoso, T. F., et al. (2017). RNA-seq based detection of differentially expressed genes in the skeletal muscle of Duroc pigs with distinct lipid profiles. Scientific Reports, 7, 40005. https://doi.org/10.1038/srep40005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pennisi, E. (2010). Genomics. Semiconductors inspire new sequencing technologies. Science, 327, 1190. https://doi.org/10.1126/science.327.5970.1190.

    Article  CAS  PubMed  Google Scholar 

  48. Tripathi, A. K., et al. (2014). Transcriptomic dissection of myogenic differentiation signature in caprine by RNA-Seq. Mechanisms of Development, 132, 79–92. https://doi.org/10.1016/j.mod.2014.01.001.

    Article  CAS  PubMed  Google Scholar 

  49. Parmakelis, A., Kotsakiozi, P., Kontos, C. K., Adamopoulos, P. G., & Scorilas, A. (2017). The transcriptome of a “sleeping” invader: De novo assembly and annotation of the transcriptome of aestivating Cornu aspersum. BMC Genomics, 18, 491. https://doi.org/10.1186/s12864-017-3885-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Possidonio, A. C., et al. (2014). Cholesterol depletion induces transcriptional changes during skeletal muscle differentiation. BMC Genomics, 15, 544. https://doi.org/10.1186/1471-2164-15-544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cartolano, M., Huettel, B., Hartwig, B., Reinhardt, R., & Schneeberger, K. (2016). cDNA Library Enrichment of Full Length Transcripts for SMRT Long Read Sequencing. PLoS One, 11, e0157779. https://doi.org/10.1371/journal.pone.0157779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen, S. Y., Deng, F., Jia, X., Li, C., & Lai, S. J. (2017). A transcriptome atlas of rabbit revealed by PacBio single-molecule long-read sequencing. Scientific Reports, 7, 7648. https://doi.org/10.1038/s41598-017-08138-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Masonbrink, R. E., et al. (2019). An annotated genome for Haliotis rufescens (Red Abalone) and resequenced green, pink, pinto, black, and white abalone species. Genome Biology and Evolution, 11, 431–438. https://doi.org/10.1093/gbe/evz006.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Loman, N. J., & Watson, M. (2015). Successful test launch for nanopore sequencing. Nature Methods, 12, 303–304. https://doi.org/10.1038/nmeth.3327.

    Article  CAS  PubMed  Google Scholar 

  55. Mikheyev, A. S., & Tin, M. M. (2014). A first look at the Oxford nanopore MinION sequencer. Molecular Ecology Resources, 14, 1097–1102. https://doi.org/10.1111/1755-0998.12324.

    Article  CAS  PubMed  Google Scholar 

  56. Ayub, M., & Bayley, H. (2012). Individual RNA base recognition in immobilized oligonucleotides using a protein nanopore. Nano Letters, 12, 5637–5643. https://doi.org/10.1021/nl3027873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Johnson, S. S., Zaikova, E., Goerlitz, D. S., Bai, Y., & Tighe, S. W. (2017). Real-time DNA sequencing in the Antarctic dry valleys using the Oxford nanopore sequencer. Journal of Biomolecular Techniques: JBT, 28, 2–7. https://doi.org/10.7171/jbt.17-2801-009.

    Article  PubMed  PubMed Central  Google Scholar 

  58. McIntyre, A. B. R., et al. (2016). Nanopore sequencing in microgravity. NPJ Microgravity, 2, 16035. https://doi.org/10.1038/npjmgrav.2016.35.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Runtuwene, L. R., Tuda, J. S. B., Mongan, A. E., & Suzuki, Y. (2019). On-site MinION sequencing. Advances in Experimental Medicine and Biology, 1129, 143–150. https://doi.org/10.1007/978-981-13-6037-4_10.

    Article  PubMed  Google Scholar 

  60. Walter, M. C., et al. (2017). MinION as part of a biomedical rapidly deployable laboratory. Journal of Biotechnology, 250, 16–22. https://doi.org/10.1016/j.jbiotec.2016.12.006.

    Article  CAS  PubMed  Google Scholar 

  61. Jain, M., Olsen, H. E., Paten, B., & Akeson, M. (2016). The Oxford nanopore MinION: Delivery of nanopore sequencing to the genomics community. Genome Biology, 17, 239. https://doi.org/10.1186/s13059-016-1103-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Narola, J., Pandey, S. N., Glick, A., & Chen, Y. W. (2013). Conditional expression of TGF-beta1 in skeletal muscles causes endomysial fibrosis and myofibers atrophy. PLoS One, 8, e79356. https://doi.org/10.1371/journal.pone.0079356. PONE-D-13-27811 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cho, D. S., & Doles, J. D. (2017). Single cell transcriptome analysis of muscle satellite cells reveals widespread transcriptional heterogeneity. Gene, 636, 54–63. https://doi.org/10.1016/j.gene.2017.09.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zeng, W., et al. (2016). Single-nucleus RNA-seq of differentiating human myoblasts reveals the extent of fate heterogeneity. Nucleic Acids Research, 44, e158. https://doi.org/10.1093/nar/gkw739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dell’Orso, S., et al. (2019). Single cell analysis of adult mouse skeletal muscle stem cells in homeostatic and regenerative conditions. Development, 146. https://doi.org/10.1242/dev.174177.

  66. Winokur, S. T., et al. (2003). Expression profiling of FSHD muscle supports a defect in specific stages of myogenic differentiation. Human Molecular Genetics, 12, 2895–2907.

    Article  CAS  PubMed  Google Scholar 

  67. Lemmers, R. J., et al. (2010). A unifying genetic model for facioscapulohumeral muscular dystrophy. Science, 329, 1650–1653. https://doi.org/10.1126/science.1189044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Snider, L., et al. (2010). Facioscapulohumeral dystrophy: Incomplete suppression of a retrotransposed gene. PLoS Genetics, 6, e1001181. https://doi.org/10.1371/journal.pgen.1001181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jones, T. I., et al. (2015). Individual epigenetic status of the pathogenic D4Z4 macrosatellite correlates with disease in facioscapulohumeral muscular dystrophy. Clinical Epigenetics, 7, 37. https://doi.org/10.1186/s13148-015-0072-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Himeda, C. L., et al. (2014). Myogenic enhancers regulate expression of the facioscapulohumeral muscular dystrophy-associated DUX4 gene. Molecular and Cellular Biology, 34, 1942–1955. https://doi.org/10.1128/MCB.00149-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. van den Heuvel, A., et al. (2019). Single-cell RNA sequencing in facioscapulohumeral muscular dystrophy disease etiology and development. Human Molecular Genetics, 28, 1064–1075. https://doi.org/10.1093/hmg/ddy400.

    Article  CAS  PubMed  Google Scholar 

  72. Ritchie, M. E., et al. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research, 43, e47–e47. https://doi.org/10.1093/nar/gkv007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gautier, L., Cope, L., Bolstad, B. M., & Irizarry, R. A. (2004). affy – Analysis of Affymetrix GeneChip data at the probe level. Bioinformatics, 20, 307–315. https://doi.org/10.1093/bioinformatics/btg405.

    Article  CAS  PubMed  Google Scholar 

  74. Dunning, M. J., Smith, M. L., Ritchie, M. E., & Tavare, S. (2007). beadarray: R classes and methods for Illumina bead-based data. Bioinformatics, 23, 2183–2184. https://doi.org/10.1093/bioinformatics/btm311.

    Article  CAS  PubMed  Google Scholar 

  75. Bolstad, B. M., Irizarry, R. A., Astrand, M., & Speed, T. P. (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics, 19, 185–193. https://doi.org/10.1093/bioinformatics/19.2.185.

    Article  CAS  PubMed  Google Scholar 

  76. Carvalho, B. S., & Irizarry, R. A. (2010). A framework for oligonucleotide microarray preprocessing. Bioinformatics, 26, 2363–2367. https://doi.org/10.1093/bioinformatics/btq431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Warnes, G. R., Bolker, B., Bonebakker, L., Gentleman, R., Huber, W., Liaw, A., Lumley, T., et al. (2009). gplots: Various R programming tools for plotting data. R package version 2.

    Google Scholar 

  78. Student. (1908). The probable error of a mean. Biometrika.

    Google Scholar 

  79. Fisher, R. (1919). A. XV.—The correlation between relatives on the supposition of Mendelian inheritance. Transactions of the Royal Society of Edinburgh, 52, 399–433. https://doi.org/10.1017/S0080456800012163.

    Article  Google Scholar 

  80. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57, 289–300. https://doi.org/10.2307/2346101.

    Article  Google Scholar 

  81. Bonferroni, C. (1936). Teoria statistica delle classi e calcolo delle probabilità. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze, 8, 3–62.

    Google Scholar 

  82. Schadt, E. E., Turner, S., & Kasarskis, A. (2010). A window into third-generation sequencing. Human Molecular Genetics, 19, R227–R240. https://doi.org/10.1093/hmg/ddq416.

    Article  CAS  PubMed  Google Scholar 

  83. Eisenstein, M. (2012). Oxford nanopore announcement sets sequencing sector abuzz. Nature Biotechnology, 30, 295–296. https://doi.org/10.1038/nbt0412-295.

    Article  CAS  PubMed  Google Scholar 

  84. Kim, D., et al. (2013). TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology, 14, R36. https://doi.org/10.1186/gb-2013-14-4-r36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Trapnell, C., et al. (2012). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols, 7, 562–578. https://doi.org/10.1038/nprot.2012.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Trapnell, C., et al. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 28, 511–515. https://doi.org/10.1038/nbt.1621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9, 357–359. https://doi.org/10.1038/nmeth.1923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Adjeroh, D., Bell, T., & Mukherjee, A. (2008). The Burrows-Wheeler Transform: Data compression, suffix arrays, and pattern matching. New York: Springer.

    Book  Google Scholar 

  89. Ferragina, P., & Manzini, G. (2001). An experimental study of a compressed index. Information Sciences, 135, 13–28. https://doi.org/10.1016/S0020-0255(01)00098-6.

    Article  Google Scholar 

  90. Dobin, A., et al. (2013). STAR: Ultrafast universal RNA-seq aligner. Bioinformatics (Oxford, England), 29, 15–21. https://doi.org/10.1093/bioinformatics/bts635.

    Article  CAS  Google Scholar 

  91. Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 12, 357–360. https://doi.org/10.1038/nmeth.3317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pertea, M., Kim, D., Pertea, G. M., Leek, J. T., & Salzberg, S. L. (2016). Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nature Protocols, 11, 1650–1667. https://doi.org/10.1038/nprot.2016.095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pertea, M., et al. (2015). StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 33, 290–295. https://doi.org/10.1038/nbt.3122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Frazee, A. C., et al. (2015). Ballgown bridges the gap between transcriptome assembly and expression analysis. Nature Biotechnology, 33, 243–246. https://doi.org/10.1038/nbt.3172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Li, H., et al. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics (Oxford, England), 25, 2078–2079. https://doi.org/10.1093/bioinformatics/btp352.

    Article  CAS  Google Scholar 

  96. Wang, L., Wang, S., & Li, W. (2012). RSeQC: Quality control of RNA-seq experiments. Bioinformatics, 28, 2184–2185. https://doi.org/10.1093/bioinformatics/bts356.

    Article  CAS  PubMed  Google Scholar 

  97. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., & Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 5, 621–628. https://doi.org/10.1038/nmeth.1226.

    Article  CAS  PubMed  Google Scholar 

  98. Li, B., Ruotti, V., Stewart, R. M., Thomson, J. A., & Dewey, C. N. (2010). RNA-Seq gene expression estimation with read mapping uncertainty. Bioinformatics, 26, 493–500. https://doi.org/10.1093/bioinformatics/btp692.

    Article  CAS  PubMed  Google Scholar 

  99. Li, B., & Dewey, C. N. (2011). RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12, 323. https://doi.org/10.1186/1471-2105-12-323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Dempster, A. P., Laird, N. M., & Rubin, D. B. (1976). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1), 1–38.

    Article  Google Scholar 

  101. Anders, S., Pyl, P. T., & Huber, W. (2015). HTSeq—A Python framework to work with high-throughput sequencing data. Bioinformatics (Oxford, England), 31, 166–169. https://doi.org/10.1093/bioinformatics/btu638.

    Article  CAS  Google Scholar 

  102. Liao, Y., Smyth, G. K., & Shi, W. (2014). featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30, 923–930. https://doi.org/10.1093/bioinformatics/btt656.

    Article  CAS  PubMed  Google Scholar 

  103. Lawrence, M., et al. (2013). Software for computing and annotating genomic ranges. PLoS Computational Biology, 9, e1003118. https://doi.org/10.1371/journal.pcbi.1003118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Soneson, C., Love, M. I., & Robinson, M. D. (2015). Differential analyses for RNA-seq: Transcript-level estimates improve gene-level inferences. F1000Research, 4, 1521. https://doi.org/10.12688/f1000research.7563.1.

    Article  CAS  PubMed  Google Scholar 

  105. Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139–140. https://doi.org/10.1093/bioinformatics/btp616.

    Article  CAS  PubMed  Google Scholar 

  106. Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15, 550. https://doi.org/10.1186/s13059-014-0550-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Nelder, J. A., & Wedderburn, R. W. M. (1972). Generalized linear models. Journal of the Royal Statistical Society. Series A (General), 135, 370. https://doi.org/10.2307/2344614.

    Article  Google Scholar 

  108. Wald, A. (1945). Sequential tests of statistical hypotheses. The Annals of Mathematical Statistics, 16, 117–186. https://doi.org/10.1214/aoms/1177731118.

    Article  Google Scholar 

  109. Feng, J., et al. (2012). GFOLD: A generalized fold change for ranking differentially expressed genes from RNA-seq data. Bioinformatics, 28, 2782–2788. https://doi.org/10.1093/bioinformatics/bts515.

    Article  CAS  PubMed  Google Scholar 

  110. Tarazona, S., et al. (2015). Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package. Nucleic Acids Research, 43, e140. https://doi.org/10.1093/nar/gkv711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Eberwine, J., et al. (1992). Analysis of gene expression in single live neurons. Proceedings of the National Academy of Sciences of the United States of America, 89, 3010–3014. https://doi.org/10.1073/pnas.89.7.3010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hwang, B., Lee, J. H., & Bang, D. (2018). Single-cell RNA sequencing technologies and bioinformatics pipelines. Experimental and Molecular Medicine, 50, 96. https://doi.org/10.1038/s12276-018-0071-8.

    Article  CAS  PubMed Central  Google Scholar 

  113. Van Der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research, 9, 2579–2605.

    Google Scholar 

  114. Butler, A., Hoffman, P., Smibert, P., Papalexi, E., & Satija, R. (2018). Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nature Biotechnology, 36, 411–420. https://doi.org/10.1038/nbt.4096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gatto, S., Puri, P. L., & Malecova, B. (2017). Single cell gene expression profiling of skeletal muscle-derived cells. Methods in Molecular Biology, 1556, 191–219. https://doi.org/10.1007/978-1-4939-6771-1_10.

    Article  CAS  PubMed  Google Scholar 

  116. Banerji, C. R. S., et al. (2017). PAX7 target genes are globally repressed in facioscapulohumeral muscular dystrophy skeletal muscle. Nature Communications, 8, 2152. https://doi.org/10.1038/s41467-017-01200-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Stahl, P. L., et al. (2016). Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science, 353, 78–82. https://doi.org/10.1126/science.aaf2403.

    Article  CAS  PubMed  Google Scholar 

  118. Saletore, Y., et al. (2012). The birth of the Epitranscriptome: Deciphering the function of RNA modifications. Genome Biology, 13, 175. https://doi.org/10.1186/gb-2012-13-10-175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Wen Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The American Physiological Society

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, P., Bhattacharya, S., Chen, YW. (2019). Transcriptomic Approaches for Muscle Biology and Disorders. In: Burniston, J., Chen, YW. (eds) Omics Approaches to Understanding Muscle Biology. Methods in Physiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9802-9_5

Download citation

Publish with us

Policies and ethics