Skip to main content

Sensitivity-Based Topology and Shape Optimization with Application to Electric Motors

  • Chapter
Frontiers in PDE-Constrained Optimization

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 163))

Abstract

In many industrial applications, one is interested in finding an optimal layout of an object, which often leads to PDE-constrained shape optimization problems. Such problems can be approached by shape optimization methods, where a domain is altered by smooth deformation of its boundary, or by means of topology optimization methods, which in addition can alter the connectivity of the initial design. We give an overview over established topology optimization methods and focus on an approach based on the sensitivity of the cost function with respect to a topological perturbation of the domain, called the topological derivative. We illustrate a way to derive this sensitivity and discuss the additional difficulties arising in the case of a nonlinear PDE constraint. We show numerical results for the optimization of an electric motor which are obtained by a combination of two methods: a level set algorithm which is based on the topological derivative, and a shape optimization method together with a special treatment of the evolving material interface which assures accurate approximate solutions to the underlying PDE constraint as well as a smooth final design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Allaire. Shape optimization by the homogenization method. Applied mathematical sciences. Springer, New York, 2002.

    Book  MATH  Google Scholar 

  2. H. Ammari and H. Kang. Polarization and Moment Tensors. Springer-Verlag New York, 2007.

    Google Scholar 

  3. S. Amstutz. Sensitivity analysis with respect to a local perturbation of the material property. Asymptotic analysis, 49(1), 2006.

    Google Scholar 

  4. S. Amstutz. Analysis of a level set method for topology optimization. Optimization Methods and Software - Advances in Shape an Topology Optimization: Theory, Numerics and New Application Areas, 26(4–5):555–573, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Amstutz and H. Andrä. A new algorithm for topology optimization using a level-set method. Journal of Computational Physics, 216(2):573–588, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Amstutz and A. Bonnafé. Topological derivatives for a class of quasilinear elliptic equations. Journal de mathématiques pures et appliquées.

    Google Scholar 

  7. T. Belytschko, R. Gracie, and G. Ventura. A review of extended/generalized finite element methods for material modeling. Model. Simul. Mater. Sci. Eng., 17(4), 2009.

    Article  Google Scholar 

  8. M. P. Bendsøe. Optimal shape design as a material distribution problem. Structural Optimization, 1(4):193–202, 1989.

    Article  Google Scholar 

  9. M. P. Bendsoe and N. Kikuchi. Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng., 71(2):197–224, Nov. 1988.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. P. Bendsøe and O. Sigmund. Topology Optimization: Theory, Methods and Applications. Springer, Berlin, 2003.

    MATH  Google Scholar 

  11. A. Binder. Elektrische Maschinen und Antriebe: Grundlagen, Betriebsverhalten. Springer-Lehrbuch. Springer, 2012.

    Book  Google Scholar 

  12. M. Burger and R. Stainko. Phase-field relaxation of topology optimization with local stress constraints. SIAM J. Control Optim., 45(4):1447–1466, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  13. E. Burman, S. Claus, P. Hansbo, M. G. Larson, and A. Massing. CutFEM: Discretizing geometry and partial differential equations. International Journal for Numerical Methods in Engineering, 104(7):472–501, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  14. F. Campelo, J. Ramırez, and H. Igarashi. A survey of topology optimization in electromagnetics: considerations and current trends. 2010.

    Google Scholar 

  15. A. N. Christiansen, M. Nobel-Jørgensen, N. Aage, O. Sigmund, and J. A. Bærentzen. Topology optimization using an explicit interface representation. Structural and Multidisciplinary Optimization, 49(3):387–399, 2014.

    Article  MathSciNet  Google Scholar 

  16. M. C. Delfour and J.-P. Zolésio. Shapes and geometries, volume 22 of Advances in Design and Control. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition, 2011. Metrics, analysis, differential calculus, and optimization.

    Google Scholar 

  17. H. A. Eschenauer, V. V. Kobelev, and A. Schumacher. Bubble method for topology and shape optimization of structures. Structural optimization, 8(1):42–51, 1994.

    Article  Google Scholar 

  18. S. Frei and T. Richter. A locally modified parametric finite element method for interface problems. SIAM J. Numer. Anal., 52(5):2315–2334, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  19. T.-P. Fries and T. Belytschko. The extended/generalized finite element method: An overview of the method and its applications. Int. J. Numer. Meth. Eng., 84(3):253–304, 2010.

    MathSciNet  MATH  Google Scholar 

  20. P. Gangl. Sensitivity-based topology and shape optimization with application to electrical machines. PhD thesis, Johannes Kepler University Linz, 2016.

    Google Scholar 

  21. P. Gangl, U. Langer, A. Laurain, H. Meftahi, and K. Sturm. Shape optimization of an electric motor subject to nonlinear magnetostatics. SIAM Journal on Scientific Computing, 37(6):B1002–B1025, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  22. H. Garcke, C. Hecht, M. Hinze, and C. Kahle. Numerical approximation of phase field based shape and topology optimization for fluids. SIAM Journal on Scientific Computing, 37(4):A1846–A1871, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Hansbo and P. Hansbo. An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Computer Methods in Applied Mechanics and Engineering, 191(47–48):5537 – 5552, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Hiptmair, A. Paganini, and S. Sargheini. Comparison of approximate shape gradients. BIT, 55(2):459–485, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Laurain and K. Sturm. Distributed shape derivative via averaged adjoint method and applications. ESAIM: M2AN, 50(4):1241–1267, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  26. Z. Li. The immersed interface method using a finite element formulation. Appl. Num. Math., 27:253–267, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  27. S. Osher and J. A. Sethian. Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 79(1):12–49, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  28. C. Pechstein and B. Jüttler. Monotonicity-preserving interproximation of B-H-curves. J. Comp. App. Math., 196:45–57, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  29. O. Sigmund and K. Maute. Topology optimization approaches: A comparative review. Structural and Multidisciplinary Optimization, 48(6):1031–1055, 2013.

    Article  MathSciNet  Google Scholar 

  30. O. Sigmund and J. Petersson. Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Structural Optimization, 16(1):68–75, 1998.

    Article  Google Scholar 

  31. J. Sokołowski and A. Zochowski. On the topological derivative in shape optimization. SIAM Journal on Control and Optimization, 37(4):1251–1272, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  32. J. Sokołowski and J.-P. Zolésio. Introduction to shape optimization, volume 16 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 1992. Shape sensitivity analysis.

    Chapter  MATH  Google Scholar 

  33. K. Sturm. Minimax Lagrangian approach to the differentiability of nonlinear PDE constrained shape functions without saddle point assumption. SIAM Journal on Control and Optimization, 53(4):2017–2039, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  34. N. P. van Dijk, K. Maute, M. Langelaar, and F. van Keulen. Level-set methods for structural topology optimization: a review. Structural and Multidisciplinary Optimization, 48(3): 437–472, 2013.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Gangl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Cite this chapter

Gangl, P. (2018). Sensitivity-Based Topology and Shape Optimization with Application to Electric Motors. In: Antil, H., Kouri, D.P., Lacasse, MD., Ridzal, D. (eds) Frontiers in PDE-Constrained Optimization. The IMA Volumes in Mathematics and its Applications, vol 163. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8636-1_9

Download citation

Publish with us

Policies and ethics