Skip to main content

On the Use of Optimal Transport Distances for a PDE-Constrained Optimization Problem in Seismic Imaging

  • Chapter
Frontiers in PDE-Constrained Optimization

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 163))

Abstract

Full waveform inversion is a PDE-constrained nonlinear least-squares problem dedicated to the estimation of the mechanical subsurface properties with high resolution. Since its introduction in the early 80s, a limitation of this method is related to the non-convexity of the misfit function which is minimized when the method is applied to the estimation of the subsurface wave velocities. Recently, the definition of an alternative misfit function based on an optimal transport distance has been proposed to mitigate this difficulty. In this study, we review the difficulties for exploiting standard optimal transport techniques for the comparison of seismic data. The main difficulty is related to the oscillatory nature of the seismic data, which requires to extend optimal transport to the transport of signed measures. We review three standard possible extensions relying on a decomposition of the data into its positive and negative part. We show how the two first might not be adapted for full waveform inversion and focus on the third one. We present a numerical strategy based on the dual formulation of a particular optimal transport distance yielding an efficient implementation. The interest of this approach is illustrated on the 2D benchmark Marmousi model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, J. C. (1989). MUDPACK: Multigrid portable FORTRAN software for the efficient solution of linear elliptic partial differential equations. Applied Mathematics and Computation, 34(2):113–146.

    Article  Google Scholar 

  2. Ambrosio, L., Gigli, N., and Savaré, G. (2008). Gradient flows: in metric spaces and in the space of probability measures. Springer Science & Business Media.

    Google Scholar 

  3. Benamou, J.-D. and Brenier, Y. (2000). A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numerische Mathematik.

    Google Scholar 

  4. Benamou, J.-D., Carlier, G., Cuturi, M., Nenna, L., and Peyré, G. (2015). Iterative Bregman Projections for Regularized Transportation Problems. SIAM Journal on Scientific Computing, 37(2):A1111–A1138.

    Article  MathSciNet  Google Scholar 

  5. Bogachev, V. I. (2007). Measure Theory. Number vol. I,II in Measure Theory. Springer Berlin Heidelberg.

    MATH  Google Scholar 

  6. Bozdağ, E., Trampert, J., and Tromp, J. (2011). Misfit functions for full waveform inversion based on instantaneous phase and envelope measurements. Geophysical Journal International, 185(2):845–870.

    Article  Google Scholar 

  7. Brandt, A. (1977). Multi-level adaptive solutions to boundary-value problems. Mathematics of Computation, 31:333–390.

    Article  MathSciNet  Google Scholar 

  8. Bunks, C., Salek, F. M., Zaleski, S., and Chavent, G. (1995). Multiscale seismic waveform inversion. Geophysics, 60(5):1457–1473.

    Article  Google Scholar 

  9. Chavent, G. (1971). Analyse fonctionnelle et identification de coefficients répartis dans les équations aux dérivées partielles. PhD thesis, Université de Paris.

    Google Scholar 

  10. Combettes, P. L. and Pesquet, J.-C. (2011). Proximal splitting methods in signal processing. In Bauschke, H. H., Burachik, R. S., Combettes, P. L., Elser, V., Luke, D. R., and Wolkowicz, H., editors, Fixed-Point Algorithms for Inverse Problems in Science and Engineering, volume 49 of Springer Optimization and Its Applications, pages 185–212. Springer New York.

    Google Scholar 

  11. Cuturi, M. (2013). Sinkhorn distances: lightspeed computation of optimal transportation distances. Advances in Neural Information Processing Systems.

    Google Scholar 

  12. Devaney, A. (1984). Geophysical diffraction tomography. Geoscience and Remote Sensing, IEEE Transactions on, GE-22(1):3–13.

    Article  Google Scholar 

  13. Engquist, B. and Froese, B. D. (2014). Application of the Wasserstein metric to seismic signals. Communications in Mathematical Science, 12(5):979–988.

    Article  MathSciNet  Google Scholar 

  14. Fichtner, A., Kennett, B. L. N., Igel, H., and Bunge, H. P. (2008). Theoretical background for continental- and global-scale full-waveform inversion in the time-frequency domain. Geophysical Journal International, 175:665–685.

    Article  Google Scholar 

  15. Hale, D. (2013). Dynamic warping of seismic images. Geophysics, 78(2):S105–S115.

    Article  Google Scholar 

  16. Jannane, M., Beydoun, W., Crase, E., Cao, D., Koren, Z., Landa, E., Mendes, M., Pica, A., Noble, M., Roeth, G., Singh, S., Snieder, R., Tarantola, A., and Trezeguet, D. (1989). Wavelengths of Earth structures that can be resolved from seismic reflection data. Geophysics, 54(7):906–910.

    Article  Google Scholar 

  17. Kantorovich, L. (1942). On the transfer of masses. Dokl. Acad. Nauk. USSR, 37:7–8.

    Google Scholar 

  18. Lailly, P. (1983). The seismic inverse problem as a sequence of before stack migrations. In Bednar, R. and Weglein, editors, Conference on Inverse Scattering, Theory and application, Society for Industrial and Applied Mathematics, Philadelphia, pages 206–220.

    Google Scholar 

  19. Le Dimet, F. and Talagrand, O. (1986). Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus A, 38A(2):97–110.

    Article  Google Scholar 

  20. Lellmann, J., Lorenz, D., Schönlieb, C., and Valkonen, T. (2014). Imaging with Kantorovich–Rubinstein discrepancy. SIAM Journal on Imaging Sciences, 7(4):2833–2859.

    Article  MathSciNet  Google Scholar 

  21. Lions, J. L. (1968). Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Dunod, Paris.

    MATH  Google Scholar 

  22. Luo, S. and Sava, P. (2011). A deconvolution-based objective function for wave-equation inversion. SEG Technical Program Expanded Abstracts, 30(1):2788–2792.

    Article  Google Scholar 

  23. Luo, Y. and Schuster, G. T. (1991). Wave-equation traveltime inversion. Geophysics, 56(5):645–653.

    Article  Google Scholar 

  24. Mainini, E. (2012). A description of transport cost for signed measures. Journal of Mathematical Sciences, 181(6):837–855.

    Article  MathSciNet  Google Scholar 

  25. Métivier, L. and Brossier, R. (2016). The SEISCOPE optimization toolbox: A large-scale nonlinear optimization library based on reverse communication. Geophysics, 81(2):F11–F25.

    Article  Google Scholar 

  26. Métivier, L., Brossier, R., Mérigot, Q., Oudet, E., and Virieux, J. (2016). Increasing the robustness and applicability of full waveform inversion: an optimal transport distance strategy. The Leading Edge, 35(12):1060–1067.

    Article  Google Scholar 

  27. Métivier, L., Brossier, R., Mérigot, Q., Oudet, E., and Virieux, J. (2016). Measuring the misfit between seismograms using an optimal transport distance: Application to full waveform inversion. Geophysical Journal International, 205:345–377.

    Article  Google Scholar 

  28. Métivier, L., Brossier, R., Mérigot, Q., Oudet, E., and Virieux, J. (2016c). An optimal transport approach for seismic tomography: Application to 3D full waveform inversion. Inverse Problems, 32(11):115008.

    Article  MathSciNet  Google Scholar 

  29. Nash, S. G. (2000). A survey of truncated Newton methods. Journal of Computational and Applied Mathematics, 124:45–59.

    Article  MathSciNet  Google Scholar 

  30. Nocedal, J. (1980). Updating Quasi-Newton Matrices With Limited Storage. Mathematics of Computation, 35(151):773–782.

    Article  MathSciNet  Google Scholar 

  31. Nocedal, J. and Wright, S. J. (2006). Numerical Optimization. Springer, 2nd edition.

    Google Scholar 

  32. Operto, S., Brossier, R., Gholami, Y., Métivier, L., Prieux, V., Ribodetti, A., and Virieux, J. (2013). A guided tour of multiparameter full waveform inversion for multicomponent data: from theory to practice. The Leading Edge, Special section Full Waveform Inversion(September):1040–1054.

    Article  Google Scholar 

  33. Philippis, G. D. and Figalli, A. (2014). The Monge-Ampère equation and its link to optimal transportation. BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY.

    Google Scholar 

  34. Plessix, R. E. (2006). A review of the adjoint-state method for computing the gradient of a functional with geophysical applications. Geophysical Journal International, 167(2):495–503.

    Article  Google Scholar 

  35. Pratt, R. G. (1999). Seismic waveform inversion in the frequency domain, part I : theory and verification in a physical scale model. Geophysics, 64:888–901.

    Article  Google Scholar 

  36. Santambrogio, F. (2015). Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling. Progress in Nonlinear Differential Equations and Their Applications. Springer International Publishing.

    Book  Google Scholar 

  37. Shipp, R. M. and Singh, S. C. (2002). Two-dimensional full wavefield inversion of wide-aperture marine seismic streamer data. Geophysical Journal International, 151:325–344.

    Article  Google Scholar 

  38. Swarztrauber, P. N. (1974). A Direct Method for the Discrete Solution of Separable Elliptic Equations. SIAM Journal on Numerical Analysis, 11(6):1136–1150.

    Article  MathSciNet  Google Scholar 

  39. Symes, W. W. (2008). Migration velocity analysis and waveform inversion. Geophysical Prospecting, 56:765–790.

    Article  Google Scholar 

  40. Tarantola, A. (1984). Inversion of seismic reflection data in the acoustic approximation. Geophysics, 49(8):1259–1266.

    Article  Google Scholar 

  41. Villani, C. (2003). Topics in optimal transportation. Graduate Studies In Mathematics, Vol. 50, AMS.

    Google Scholar 

  42. Villani, C. (2008). Optimal transport : old and new. Grundlehren der mathematischen Wissenschaften. Springer, Berlin.

    Google Scholar 

  43. Virieux, J., Asnaashari, A., Brossier, R., Métivier, L., Ribodetti, A., and Zhou, W. (2017). An introduction to Full Waveform Inversion. In Grechka, V. and Wapenaar, K., editors, Encyclopedia of Exploration Geophysics, page R1–1–R1–40. Society of Exploration Geophysics.

    Google Scholar 

  44. Virieux, J. and Operto, S. (2009). An overview of full waveform inversion in exploration geophysics. Geophysics, 74(6):WCC1–WCC26.

    Article  Google Scholar 

  45. Warner, M. and Guasch, L. (2014). Adaptative waveform inversion - FWI without cycle skipping - theory. In 76th EAGE Conference and Exhibition 2014, page We E106 13.

    Google Scholar 

Download references

Acknowledgements

This study was partially funded by the SEISCOPE consortium ( http://seiscope2.osug.fr ), sponsored by CGG, CHEVRON, EXXON-MOBIL, JGI, SHELL, SINOPEC, STATOIL, TOTAL, and WOODSIDE. This study was granted access to the HPC resources of the Froggy platform of the CIMENT infrastructure (https://ciment.ujf-grenoble.fr), which is supported by the Rhône-Alpes region (GRANT CPER07_13 CIRA), the OSUG@2020 labex (reference ANR10 LABX56), and the Equip@Meso project (reference ANR-10-EQPX-29-01) of the programme Investissements d’Avenir supervised by the Agence Nationale pour la Recherche, and the HPC resources of CINES/IDRIS/TGCC under the allocation 046091 made by GENCI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Métivier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Cite this chapter

Métivier, L., Allain, A., Brossier, R., Mérigot, Q., Oudet, E., Virieux, J. (2018). On the Use of Optimal Transport Distances for a PDE-Constrained Optimization Problem in Seismic Imaging. In: Antil, H., Kouri, D.P., Lacasse, MD., Ridzal, D. (eds) Frontiers in PDE-Constrained Optimization. The IMA Volumes in Mathematics and its Applications, vol 163. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8636-1_11

Download citation

Publish with us

Policies and ethics