Skip to main content

Gadd45 in Stress Signaling, Cell Cycle Control, and Apoptosis

  • Chapter
  • First Online:
Gadd45 Stress Sensor Genes

Abstract

The first identified Gadd45 gene, Gadd45a, encodes a ubiquitously expressed protein that is often induced by DNA damage and other stress signals associated with growth arrest and apoptosis. This protein and the other two members of this small gene family, Gadd45b and Gadd45g, have been implicated in a variety of the responses to cell injury including cell cycle checkpoints, apoptosis, and DNA repair. In vivo, many of the prominent roles for the Gadd45 proteins are associated with signaling mediated by p38 mitogen-activated protein kinases (MAPK). Gadd45 proteins can contribute to p38 activation either by activation of upstream kinase(s) or by direct interaction. In vivo, there are important tissue and cell-type-specific differences in the roles for Gadd45 in MAPK signaling. In addition to being p53-regulated, Gadd45a has been found to contribute to p53 activation via p38. Like other stress and signaling proteins, Gadd45 proteins show complex regulation and numerous effectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amanullah A, Azam N, Balliet A, Hollander C, Hoffman B, Fornace A, Liebermann D (2003) Cell signalling: cell survival and a Gadd45-factor deficiency. Nature 424:741, discussion 742

    Article  CAS  PubMed  Google Scholar 

  • Amente S, Zhang J, Lavadera ML, Lania L, Avvedimento EV, Majello B (2011) Myc and PI3K/AKT signaling cooperatively repress FOXO3a-dependent PUMA and GADD45a gene expression. Nucleic Acids Res 39:9498–9507

    Article  CAS  PubMed  Google Scholar 

  • Ashwell JD (2006) The many paths to p38 mitogen-activated protein kinase activation in the immune system. Nat Rev Immunol 6:532–540

    Article  CAS  PubMed  Google Scholar 

  • Barreto G, Schafer A, Marhold J, Stach D, Swaminathan SK, Handa V, Doderlein G, Maltry N, Wu W, Lyko F, Niehrs C (2007) Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 445:671–675

    Article  CAS  PubMed  Google Scholar 

  • Brown-Clay JD, Fornace AJ Jr (2012) Gadd45. In: Choi S (ed) Encyclopedia of signaling molecules. Springer, New York

    Google Scholar 

  • Bulavin DV, Fornace AJ Jr (2004) p38 MAP kinase’s emerging role as a tumor suppressor. Adv Cancer Res 92:95–118

    Article  CAS  PubMed  Google Scholar 

  • Bulavin DV, Kovalsky O, Hollander MC, Fornace AJ Jr (2003) Loss of oncogenic H-ras-induced cell cycle arrest and p38 mitogen-activated protein kinase activation by disruption of Gadd45a. Mol Cell Biol 23:3859–3871

    Article  CAS  PubMed  Google Scholar 

  • Carrier F, Georgel PT, Pourquier P, Blake M, Kontny HU, Antinore MJ, Gariboldi M, Myers TG, Weinstein J, Pommier Y, Fornace AJ Jr (1999) Gadd45, a p53-responsive stress protein, modifies DNA accessibility on damaged chromatin. Mol Cell Biol 19:1673–1685

    CAS  PubMed  Google Scholar 

  • Chang Q, Bhatia D, Zhang Y, Meighan T, Castranova V, Shi X, Chen F (2007) Incorporation of an internal ribosome entry site-dependent mechanism in arsenic-induced GADD45 alpha expression. Cancer Res 67:6146–6154

    Article  CAS  PubMed  Google Scholar 

  • Cho HJ, Park SM, Hwang EM, Baek KE, Kim IK, Nam IK, Im MJ, Park SH, Bae S, Park JY, Yoo J (2010) Gadd45b mediates Fas-induced apoptosis by enhancing the interaction between p38 and retinoblastoma tumor suppressor. J Biol Chem 285:25500–25505

    Article  CAS  PubMed  Google Scholar 

  • Cretu A, Sha X, Tront J, Hoffman B, Liebermann DA (2009) Stress sensor Gadd45 genes as therapeutic targets in cancer. Cancer Ther 7:268–276

    CAS  PubMed  Google Scholar 

  • Fornace AJJ, Alamo IJ, Hollander MC (1988) DNA damage-inducible transcripts in mammalian cells. Proc Natl Acad Sci USA 85:8800–8804

    Article  CAS  PubMed  Google Scholar 

  • Fornace AJ Jr, Nebert DW, Hollander MC, Luethy JD, Papathanasiou M, Fargnoli J, Holbrook NJ (1989) Mammalian genes coordinately regulated by growth arrest signals and DNA-damaging agents. Mol Cell Biol 9:4196–4203

    CAS  PubMed  Google Scholar 

  • Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T (2006) DNA repair and mutagenesis. ASM, Washington, DC

    Google Scholar 

  • Gao M, Guo N, Huang C, Song L (2009) Diverse roles of GADD45alpha in stress signaling. Curr Protein Pept Sci 10:388–394

    Article  CAS  PubMed  Google Scholar 

  • Guo W, Dong Z, Guo Y, Chen Z, Kuang G, Yang Z (2013a) Methylation-mediated repression of GADD45A and GADD45G expression in gastric cardia adenocarcinoma. Int J Cancer. PMID: 23616123

    Google Scholar 

  • Guo W, Zhu T, Dong Z, Cui L, Zhang M, Kuang G (2013b) Decreased expression and aberrant methylation of Gadd45G is associated with tumor progression and poor prognosis in esophageal squamous cell carcinoma. Clin Exp Metastasis. PMID: 23793925

    Google Scholar 

  • Gierl MS, Gruhn WH, von Seggern A, Maltry N, Niehrs C (2012) GADD45G functions in male sex determination by promoting p38 signaling and Sry expression. Dev Cell 23:1032–1042

    Article  CAS  PubMed  Google Scholar 

  • Hartman AR, Ford JM (2002) BRCA1 induces DNA damage recognition factors and enhances nucleotide excision repair. Nat Genet 32:180–184. PMID: 12195423

    Google Scholar 

  • Hildesheim J, Fornace AJ Jr (2004) The dark side of light: the damaging effects of UV rays and the protective efforts of MAP kinase signaling in the epidermis. DNA Repair (Amst) 3:567–580

    Article  CAS  Google Scholar 

  • Hildesheim J, Bulavin DV, Anver MR, Alvord WG, Hollander MC, Vardanian L, Fornace AJ Jr (2002) Gadd45a protects against UV irradiation-induced skin tumors, and promotes apoptosis and stress signaling via MAPK and p53. Cancer Res 62:7305–7315

    CAS  PubMed  Google Scholar 

  • Hildesheim J, Belova GI, Tyner SD, Zhou X, Vardanian L, Fornace AJJ (2004) Gadd45a regulates matrix metalloproteinases by suppressing DeltaNp63alpha and beta-catenin via p38 MAP kinase and APC complex activation. Oncogene 23:1829–1837

    Article  CAS  PubMed  Google Scholar 

  • Hildesheim J, Salvador JM, Hollander MC, Fornace AJ Jr (2005) Casein kinase 2- and protein kinase A-regulated adenomatous polyposis coli and {beta}-catenin cellular localization is dependent on p38 MAPK. J Biol Chem 280:17221–17226

    Article  CAS  PubMed  Google Scholar 

  • Hollander MC, Fornace AJ Jr (2002) Genomic instability, centrosome amplification, cell cycle checkpoints and Gadd45a. Oncogene 21:6228–6233

    Article  CAS  PubMed  Google Scholar 

  • Hollander MC, Sheikh MS, Bulavin D, Lundren K, Augeri-Henmueller L, Shehee R, Molinaro T, Kim K, Tolosa E, Ashwell JD, Rosenberg MD, Zhan Q, Fernández-Salguero PM, Morgan WF, Deng CX, Fornace AJ Jr (1999) Genomic instability in Gadd45a-deficient mice. Nat Genet 23:176–184

    Article  CAS  PubMed  Google Scholar 

  • Hollander MC, Kovalsky O, Salvador JM, Kim KE, Patterson AD, Hairnes DC, Fornace AJ Jr (2001) DMBA carcinogenesis in Gadd45a-null mice is associated with decreased DNA repair and increased mutation frequency. Cancer Res 61:2487–2491

    CAS  PubMed  Google Scholar 

  • Hollander MC, Philburn RT, Patterson AD, Velasco-Miguel S, Friedberg EC, Linnoila RI, Fornace AJJ (2005) Deletion of XPC leads to lung tumors in mice and is associated with early events in human lung carcinogenesis. Proc Natl Acad Sci USA 102:13200–13205

    Article  CAS  PubMed  Google Scholar 

  • Husain A, He G, Venkatraman ES, Spriggs DR (1998) BRCA1 up-regulation is associated with repair-mediated resistance to cis-diamminedichloroplatinum(II). Cancer Res 58:1120–1123. PMID: 9515792

    Google Scholar 

  • Ijiri K, Zerbini LF, Peng H, Correa RG, Lu B, Walsh N, Zhao Y, Taniguchi N, Huang XL, Otu H, Wang H, Wang JF, Komiya S, Ducy P, Rahman MU, Flavell RA, Gravallese EM, Oettgen P, Libermann TA, Goldring MB (2005) A novel role for GADD45beta as a mediator of MMP-13 gene expression during chondrocyte terminal differentiation. J Biol Chem 280:38544–38555

    Article  CAS  PubMed  Google Scholar 

  • Jackman J, Alamo I, Fornace AJ Jr (1994) Genotoxic stress confers preferential and coordinate mRNA stability on the five gadd genes. Cancer Res 54:5656–5662

    CAS  PubMed  Google Scholar 

  • Jinawath N, Vasoontara C, Yap KL, Thiaville MM, Nakayama K, Wang TL, Shih IM (2009) NAC-1, a potential stem cell pluripotency factor, contributes to paclitaxel resistance in ovarian cancer through inactivating Gadd45 pathway. Oncogene 28:1941–1948

    Article  CAS  PubMed  Google Scholar 

  • Jirmanova L, Jankovic D, Fornace AJJ, Ashwell JD (2007) Gadd45alpha regulates p38-dependent dendritic cell cytokine production and Th1 differentiation. J Immunol 178:4153–4158

    CAS  PubMed  Google Scholar 

  • Johnen H, González-Silva L, Carramolino L, Flores JM, Torres M, Salvador JM (2013) Gadd45g is essential for primary sex determination, male fertility and testis development. PLoS One 8(3):e58751

    Article  CAS  PubMed  Google Scholar 

  • Ju S, Zhu Y, Liu L, Dai S, Li C, Chen E, He Y, Zhang X, Lu B (2009) Gadd45b and Gadd45g are important for anti-tumor immune responses. Eur J Immunol 39:3010–3018

    Article  CAS  PubMed  Google Scholar 

  • Jung N, Yi YW, Kim D, Shong M, Hong SS, Lee HS, Bae I (2000) Regulation of Gadd45gamma expression by C/EBP. Eur J Biochem 267:6180–6187

    Article  CAS  PubMed  Google Scholar 

  • Jung HJ, Kim EH, Mun JY, Park S, Smith ML, Han SS, Seo YR (2007) Base excision DNA repair defect in Gadd45a-deficient cells. Oncogene 26:7517–7525

    Article  CAS  PubMed  Google Scholar 

  • Karger S, Weidinger C, Krause K, Sheu SY, Aigner T, Gimm O, Schmid KW, Dralle H, Fuhrer D (2009) FOXO3a: a novel player in thyroid carcinogenesis? Endocr Relat Cancer 16:189–199

    Article  CAS  PubMed  Google Scholar 

  • Kastan MB, Zhan Q, el-Deiry WS, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B, Fornace AJJ (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71:587–597

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann LT, Gierl MS, Niehrs C (2011) Gadd45a, Gadd45b and Gadd45g expression during mouse embryonic development. Gene Expr Patterns 11:465–470

    Article  CAS  PubMed  Google Scholar 

  • Kearsey JM, Coates PJ, Prescott AR, Warbrick E, Hall PA (1995) Gadd45 is a nuclear cell cycle regulated protein which interacts with p21Cip1. Oncogene 11:1675–1683

    CAS  PubMed  Google Scholar 

  • Kodama S, Negishi M (2011) Pregnane X receptor PXR activates the GADD45beta gene, eliciting the p38 MAPK signal and cell migration. J Biol Chem 286:3570–3578

    Article  CAS  PubMed  Google Scholar 

  • Lal A, Gorospe M (2006) Egad, more forms of gene regulation: the gadd45a story. Cell Cycle 5:1422–1425

    Article  CAS  PubMed  Google Scholar 

  • Lee HY, Youn SW, Kim JY, Park KW, Hwang CI, Park WY, Oh BH, Park YB, Walsh K, Seo JS, Kim HS (2008) FOXO3a turns the tumor necrosis factor receptor signaling towards apoptosis through reciprocal regulation of c-Jun N-terminal kinase and NF-kappaB. Arterioscler Thromb Vasc Biol 28:112–120. PMID: 18032780

    Google Scholar 

  • Li S, Ting NS, Zheng L, Chen PL, Ziv Y, Shiloh Y, Lee EY, Lee WH (2000) Functional link of BRCA1 and ataxia telangiectasia gene product in DNA damage response. Nature 406:210–215. PMID: 10910365

    Google Scholar 

  • Li Y, Zhao M, Yin H, Gao F, Wu X, Luo Y, Zhao S, Zhang X, Su Y, Hu N, Long H, Richardson B, Lu Q (2010) Overexpression of the growth arrest and DNA damage-induced 45alpha gene contributes to autoimmunity by promoting DNA demethylation in lupus T cells. Arthritis Rheum 62:1438–1447

    Article  CAS  PubMed  Google Scholar 

  • Lin CR, Yang CH, Huang CE, Wu CH, Chen YS, Sheen-Chen SM, Huang HW, Chen KH (2011) GADD45A protects against cell death in dorsal root ganglion neurons following peripheral nerve injury. J Neurosci Res 89:689–699

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Suyeoka G, Papa S, Franzoso G, Neufeld AH (2009) Growth arrest and DNA damage protein 45b (Gadd45b) protects retinal ganglion cells from injuries. Neurobiol Dis 33:104–110

    Article  CAS  PubMed  Google Scholar 

  • Lu B (2006) The molecular mechanisms that control function and death of effector CD4+ T cells. Immunol Res 36:275–282

    Article  CAS  PubMed  Google Scholar 

  • Maekawa T, Sano Y, Shinagawa T, Rahman Z, Sakuma, T, Nomura S, Licht JD, Ishii S (2008) ATF-2 controls transcription of Maspin and GADD45 alpha genes independently from p53 to suppress mammary tumors. Oncogene 27:1045–1054. PMID: 17700520

    Google Scholar 

  • Ma DK, Guo JU, Ming GL, Song H (2009) DNA excision repair proteins and Gadd45 as molecular players for active DNA demethylation. Cell Cycle 8:1526–1531

    Article  CAS  PubMed  Google Scholar 

  • Mita H, Tsutsui J, Takekawa M, Witten EA, Saito H (2002) Regulation of MTK1/MEKK4 kinase activity by its N-terminal autoinhibitory domain and GADD45 binding. Mol Cell Biol 22:4544–4555

    Article  CAS  PubMed  Google Scholar 

  • Na YK, Lee SM, Hong HS, Kim JB, Park JY, Kim DS (2010) Hypermethylation of growth arrest DNA-damage-inducible gene 45 in non-small cell lung cancer and its relationship with clinicopathologic features. Mol Cells 30:89–92

    Article  CAS  PubMed  Google Scholar 

  • Notas G, Alexaki VI, Kampa M, Pelekanou V, Charalampopoulos I, Sabour-Alaoui S, Pediaditakis I, Dessirier V, Gravanis A, Stathopoulos EN, Tsapis A, Castanas E (2012) APRIL binding to BCMA activates a JNK2-FOXO3-GADD45 pathway and induces a G2/M cell growth arrest in liver cells. J Immunol 189:4748–4758

    Article  CAS  PubMed  Google Scholar 

  • Park MA, Seok YJ, Jeong G, Lee JS (2008) SUMO1 negatively regulates BRCA1-mediated transcription, via modulation of promoter occupancy. Nucleic Acids Res 36:263–283. PMID: 18025037

    Google Scholar 

  • Papa S, Zazzeroni F, Fu YX, Bubici C, Alvarez K, Dean K, Christiansen PA, Anders RA, Franzoso G (2008) Gadd45beta promotes hepatocyte survival during liver regeneration in mice by modulating JNK signaling. J Clin Invest 118:1911–1923

    Article  CAS  PubMed  Google Scholar 

  • Papathanasiou MA, Kerr NC, Robbins JH, McBride OW, Alamo IJ, Barrett SF, Hickson ID, Fornace AJJ (1991) Induction by ionizing radiation of the gadd45 gene in cultured human cells: lack of mediation by protein kinase C. Mol Cell Biol 11:1009–1016

    CAS  PubMed  Google Scholar 

  • Paruthiyil S, Cvoro A, Tagliaferri M, Cohen I, Shtivelman E, Leitman DC (2011) Estrogen receptor beta causes a G2 cell cycle arrest by inhibiting CDK1 activity through the regulation of cyclin B1, GADD45A, and BTG2. Breast Cancer Res Treat 129(3):777–784

    Article  CAS  PubMed  Google Scholar 

  • Passos JF, Nelson G, Wang C, Richter T, Simillion C, Proctor CJ, Miwa S, Olijslagers S, Hallinan J, Wipat A, Saretzki G, Rudolph KL, Kirkwood TB, von Zglinicki T (2010) Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol Syst Biol 6:347

    Article  PubMed  Google Scholar 

  • Reinhardt HC, Hasskamp P, Schmedding I, Morandell S, van Vugt MA, Wang X, Linding R, Ong SE, Weaver D, Carr SA, Yaffe MB (2010) DNA damage activates a spatially distinct late cytoplasmic cell-cycle checkpoint network controlled by MK2-mediated RNA stabilization. Mol Cell 40:34–49

    Article  CAS  PubMed  Google Scholar 

  • Perugini M, Iarossi DG, Kok CH, Cummings N, Diakiw SM, Brown AL, Danner S, Bardy P, Bik To L, Wei AH, Lewis ID, D’Andrea RJ (2013) GADD45A methylation predicts poor overall survival in acute myeloid leukemia and is associated with IDH1/2 and DNMT3A mutations. Leukemia 27:1588–1592. PMID: 23187294

    Google Scholar 

  • Salvador JM, Hollander MC, Nguyen AT, Kopp JB, Barisoni L, Moore JK, Ashwell JD, Fornace AJ Jr (2002) Mice lacking the p53-effector gene Gadd45a develop a lupus-like syndrome. Immunity 16:499–508

    Article  CAS  PubMed  Google Scholar 

  • Salvador JM, Mittelstadt PR, Belova GI, Fornace AJ Jr, Ashwell JD (2005a) The autoimmune suppressor Gadd45alpha inhibits the T cell alternative p38 activation pathway. Nat Immunol 6:396–402

    Article  CAS  PubMed  Google Scholar 

  • Salvador JM, Mittelstadt PR, Guszczynski T, Copeland TD, Yamaguchi H, Appella E, Fornace AJ Jr, Ashwell JD (2005b) Alternative p38 activation pathway mediated by T cell receptor-proximal tyrosine kinases. Nat Immunol 6:390–395

    Article  CAS  PubMed  Google Scholar 

  • Schmitz KM, Schmitt N, Hoffmann-Rohrer U, Schafer A, Grummt I, Mayer C (2009) TAF12 recruits Gadd45a and the nucleotide excision repair complex to the promoter of rRNA genes leading to active DNA demethylation. Mol Cell 33:344–353

    Article  CAS  PubMed  Google Scholar 

  • Sen GL, Reuter JA, Webster DE, Zhu L, Khavari PA (2010) DNMT1 maintains progenitor function in self-renewing somatic tissue. Nature 463:563–567

    Article  CAS  PubMed  Google Scholar 

  • Sengupta A, Molkentin JD, Paik JH, DePinho RA,Yutzey KE (2011) FoxO transcription factors promote cardiomyocyte survival upon induction of oxidative stress. J Biol Chem 286:7468–7478. PMID: 21159781

    Google Scholar 

  • Shao S, Wang Y, Jin S, Song Y, Wang X, Fan W, Zhao Z, Fu M, Tong T, Dong L, Fan F, Xu N, Zhan Q (2006) Gadd45a interacts with aurora-A and inhibits its kinase activity. J Biol Chem 281:28943–28950

    Article  CAS  PubMed  Google Scholar 

  • Smith ML, Chen IT, Zhan Q, Bae I, Chen CY, Gilmer TM, Kastan MB, O’Connor PM, Fornace AJJ (1994) Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen. Science 266:1376–1380

    Article  CAS  PubMed  Google Scholar 

  • Smith ML, Ford JM, Hollander MC, Bortnick RA, Amundson SA, Seo YR, Deng CX, Hanawalt PC, Fornace AJ Jr (2000) p53-mediated DNA repair responses to UV radiation: studies of mouse cells lacking p53, p21, and/or gadd45 genes. Mol Cell Biol 20:3705–3714

    Article  CAS  PubMed  Google Scholar 

  • Snyder AR, Morgan WF (2004) Gene expression profiling after irradiation: clues to understanding acute and persistent responses? Cancer Metastasis Rev 23:259–268

    Article  CAS  PubMed  Google Scholar 

  • Song L, Li J, Zhang D, Liu ZG, Ye J, Zhan Q, Shen HM, Whiteman M, Huang C (2006) IKKbeta programs to turn on the GADD45alpha-MKK4-JNK apoptotic cascade specifically via p50 NF-kappaB in arsenite response. J Cell Biol 175:607–617

    Article  CAS  PubMed  Google Scholar 

  • Takekawa M, Saito H (1998) A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell 95:521–530

    Article  CAS  PubMed  Google Scholar 

  • Tong T, Ji J, Jin S, Li X, Fan W, Song Y, Wang M, Liu Z, Wu M, Zhan Q (2005) Gadd45a expression induces Bim dissociation from the cytoskeleton and translocation to mitochondria. Mol Cell Biol 25:4488–4500

    Article  CAS  PubMed  Google Scholar 

  • Tran H, Brunet A, Grenier JM, Datta SR, Fornace AJ Jr, DiStefano PS, Chiang LW, Greenberg ME (2002) DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science 296:530–534

    Article  CAS  PubMed  Google Scholar 

  • Tront JS, Willis A, Huang Y, Hoffman B, Liebermann DA (2013) Gadd45a levels in human breast cancer are hormone receptor dependent. J Transl Med 11:131

    Google Scholar 

  • Wang XW, Zhan Q, Coursen JD, Khan MA, Kontny HU, Yu L, Hollander MC, O’Connor PM, Fornace AJJ, Harris CC (1999) GADD45 induction of a G2/M cell cycle checkpoint. Proc Natl Acad Sci USA 96:3706–3711

    Article  CAS  PubMed  Google Scholar 

  • Wang XW, Wang RH, Li W, Xu X, Hollander C, Fornace A, Deng C (2004) Genetic interactions between Brca1 and Gadd45a in centrosome duplication, genetic stability and neural tube closure. J Biol Chem 279:29606–29614

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Xiao X, Li D, Chi Y, Wei P, Wang Y, Ni S, Tan C, Zhou, X, Du X (2012) Abnormal expression of GADD45B in human colorectal carcinoma. J Transl Med 10:215. PMID: 23110778

    Google Scholar 

  • Warr N, Carre GA, Siggers P, Faleato JV, Brixey R, Pope M, Bogani D, Childers M, Wells S, Scudamore CL, Tedesco M, Del Barco BI, Nebreda AR, Trainor PA, Greenfield A (2012) Gadd45gamma and Map3k4 interactions regulate mouse testis determination via p38 MAPK-mediated control of Sry expression. Dev Cell 23:1020–1031

    Article  CAS  PubMed  Google Scholar 

  • Weinstein JN, Myers TG, O’Connor PM, Friend SH, Fornace AJJ, Kohn KW, Fojo T, Bates SE, Rubinstein LV, Anderson NL, Buolamwini JK, van Osdol WW, Monks AP, Scudiero DA, Sausville EA, Zaharevitz DW, Bunow B, Viswanadhan VN, Johnson GS, Wittes RE, Paull KD (1997) An information-intensive approach to the molecular pharmacology of cancer. Science 275:343–349

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Lu LY, Yu X (2010) The role of BRCA1 in DNA damage response. Protein Cell 1:117–123. PMID: 21203981

    Google Scholar 

  • Yamamoto Y, Moore R, Flavell RA, Lu B, Negishi M (2010) Nuclear receptor CAR represses TNFalpha-induced cell death by interacting with the anti-apoptotic GADD45B. PLoS One 5:e10121

    Article  PubMed  Google Scholar 

  • Yang Z, Song L, Huang C (2009) Gadd45 proteins as critical signal transducers linking NF-kappaB to MAPK cascades. Curr Cancer Drug Targets 9:915–930

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Zhang W, Li D, Zhan Q (2013) Gadd45a suppresses tumor angiogenesis via inhibition of the mTOR/STAT3 pathway. J Biol Chem 288(9):6552–6560

    Article  CAS  PubMed  Google Scholar 

  • Yoo J, Ghiassi M, Jirmanova L, Balliet AG, Hoffman B, Fornace AJ Jr, Liebermann DA, Bottinger EP, Roberts AB (2003) Transforming growth factor-beta-induced apoptosis is mediated by Smad-dependent expression of GADD45b through p38 activation. J Biol Chem 278:43001–43007

    Article  CAS  PubMed  Google Scholar 

  • Zerbini LF, Wang Y, Czibere A, Correa RG, Cho JY, Ijiri K, Wei W, Joseph M, Gu X, Grall F, Goldring MB, Zhou JR, Libermann TA (2004) NF-kappa B-mediated repression of growth arrest- and DNA-damage-inducible proteins 45alpha and gamma is essential for cancer cell survival. Proc Natl Acad Sci USA 101:13618–13623

    Article  CAS  PubMed  Google Scholar 

  • Zhan Q, Chen IT, Antinore MJ, Fornace AJ Jr (1998) Tumor suppressor p53 can participate in transcriptional induction of the GADD45 promoter in the absence of direct DNA binding. Mol Cell Biol 18:2768–2778

    CAS  PubMed  Google Scholar 

  • Zhan Q, Antinore MJ, Wang XW, Carrier F, Smith ML, Harris CC, Fornace AJJ (1999) Association with Cdc2 and inhibition of Cdc2/Cyclin B1 kinase activity by the p53-regulated protein Gadd45. Oncogene 18:2892–2900

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Li T, Shao Y, Zhang C, Wu Q, Yang H, Zhang J, Guan M, Yu B, Wan J (2010) Semi-quantitative detection of GADD45-gamma methylation levels in gastric, colorectal and pancreatic cancers using methylation-sensitive high-resolution melting analysis. J Cancer Res Clin Oncol 136:1267–1273

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert J. Fornace Jr. M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Salvador, J.M., Brown-Clay, J.D., Fornace, A.J. (2013). Gadd45 in Stress Signaling, Cell Cycle Control, and Apoptosis. In: Liebermann, D., Hoffman, B. (eds) Gadd45 Stress Sensor Genes. Advances in Experimental Medicine and Biology, vol 793. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8289-5_1

Download citation

Publish with us

Policies and ethics