Skip to main content

Assessing Somatosensory Profiles and Autonomic Nervous System Responses in Physical Exercise Studies

  • Chapter
  • First Online:
Functional Neuroimaging in Exercise and Sport Sciences
  • 1938 Accesses

Abstract

The aim of this chapter is to summarize methods for assessing effects of physical exercise on somatosensory and autonomic nervous system responses. The focus will be laid on extended methods for evaluating thermal and pain processing (“Quantitative Sensory Testing”; QST), which may be modulated by exercise. Additionally, methods for measuring blood pressure (BP), heart rate (HR), heart rate variability (HRV), and skin conductance (SC) in the MRI scanner will be reviewed, as the autonomic nervous system is involved in both exercise and pain. Implementing these methods in the context of human neuroimaging experiments has important implications for the conduction, analysis, and interpretation of exercise studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andreassi JL (2007) Psychophysiology. Human behavior and physiological response, 5th edn. Lawrence Erlbaum, London

    Google Scholar 

  • Appelhans BM, Luecken LJ (2008) Heart rate variability and pain: associations of two interrelated homeostatic processes. Biol Psychol 77:174–182

    Article  PubMed  Google Scholar 

  • Benedek M, Kaernbach C (2010a) A continuous measure of phasic electrodermal activity. J Neurosci Methods 190:80–91

    Article  PubMed  Google Scholar 

  • Benedek M, Kaernbach C (2010b) Decomposition of skin conductance data by means of nonnegative deconvolution. Psychophysiology 47:647–658

    PubMed  Google Scholar 

  • Black J, Chesher GB, Starmer GA, Egger G (1979) Painlessness of the long-distance runner. Med J Aust 1:522–523

    PubMed  CAS  Google Scholar 

  • Boecker H, Henriksen G, Sprenger T, Miederer I, Willoch F, Valet M, Berthele A, Tolle TR (2008) Positron emission tomography ligand activation studies in the sports sciences: measuring neurochemistry in vivo. Methods 45:307–318

    Article  PubMed  CAS  Google Scholar 

  • Bushnell MC, Duncan GH, Dubner R, Jones RL, Maixner W (1985) Attentional influences on noxious and innocuous cutaneous heat detection in humans and monkeys. J Neurosci 5:1103–1110

    PubMed  CAS  Google Scholar 

  • Critchley HD, Corfield DR, Chandler MP, Mathias CJ, Dolan RJ (2000) Cerebral correlates of autonomic cardiovascular arousal: a functional neuroimaging investigation in humans. J Physiol 523(Pt 1):259–270

    Article  PubMed  CAS  Google Scholar 

  • Critchley HD, Nagai Y, Gray MA, Mathias CJ (2011) Dissecting axes of autonomic control in humans: insights from neuroimaging. Auton Neurosci 161:34–42

    Article  PubMed  Google Scholar 

  • Dietrich A, McDaniel WF (2004) Endocannabinoids and exercise. Br J Sports Med 38:536–541

    Article  PubMed  CAS  Google Scholar 

  • Droste C, Greenlee MW (1992) Comments on Padawer and Levine, PAIN, 48 (1992) 132–135. Pain 50:241, author reply 242–243

    Article  PubMed  CAS  Google Scholar 

  • Droste C, Greenlee MW, Schreck M, Roskamm H (1991) Experimental pain thresholds and plasma beta-endorphin levels during exercise. Med Sci Sports Exerc 23:334–342

    PubMed  CAS  Google Scholar 

  • Dube AA, Duquette M, Roy M, Lepore F, Duncan G, Rainville P (2009) Brain activity associated with the electrodermal reactivity to acute heat pain. Neuroimage 45:169–180

    Article  PubMed  Google Scholar 

  • Dworkin BR, Elbert T, Rau H, Birbaumer N, Pauli P, Droste C, Brunia CH (1994) Central effects of baroreceptor activation in humans: attenuation of skeletal reflexes and pain perception. Proc Natl Acad Sci USA 91:6329–6333

    Article  PubMed  CAS  Google Scholar 

  • Dyck PJ et al. (1993) Quantitative sensory testing: a consensus report from the Peripheral Neuropathy Association. Neurology 43:1050–1052

    Google Scholar 

  • Farrell PA (1985) Exercise and endorphins – male responses. Med Sci Sports Exerc 17:89–93

    PubMed  CAS  Google Scholar 

  • Focht BC, Koltyn KF (2009) Alterations in pain perception after resistance exercise performed in the morning and evening. J Strength Cond Res 23:891–897

    Article  PubMed  Google Scholar 

  • France CR (1999) Decreased pain perception and risk for hypertension: considering a common physiological mechanism. Psychophysiology 36:683–692

    Article  PubMed  CAS  Google Scholar 

  • Geber C, Klein T, Azad S, Birklein F, Gierthmuhlen J, Huge V, Lauchart M, Nitzsche D, Stengel M, Valet M, Baron R, Maier C, Tolle T, Treede RD (2011) Test-retest and interobserver reliability of quantitative sensory testing according to the protocol of the German Research Network on Neuropathic Pain (DFNS): a multi-centre study. Pain 152:548–556

    Article  PubMed  Google Scholar 

  • Ghione S (1996) Hypertension-associated hypalgesia. Evidence in experimental animals and humans, pathophysiological mechanisms, and potential clinical consequences. Hypertension 28:494–504

    Article  PubMed  CAS  Google Scholar 

  • Goldfarb AH, Jamurtas AZ (1997) Beta-endorphin response to exercise. An update. Sports Med 24:8–16

    Article  PubMed  CAS  Google Scholar 

  • Handwerker HO, Keck FS, Neermann G (1982) Detection of temperature increases in the operating range of warm receptors and of nociceptors. Pain 14:11–20

    Article  PubMed  CAS  Google Scholar 

  • Hoffman MD, Shepanski MA, MacKenzie SP, Clifford PS (2005) Experimentally induced pain perception is acutely reduced by aerobic exercise in people with chronic low back pain. J Rehabil Res Dev 42:183–189

    Article  PubMed  Google Scholar 

  • Hoffmann P, Skarphedinsson JO, Delle M, Thoren P (1990) Electrical stimulation of the gastrocnemius muscle in the spontaneously hypertensive rat increases the pain threshold: role of different serotonergic receptors. Acta Physiol Scand 138:125–131

    Article  PubMed  CAS  Google Scholar 

  • Janal MN, Colt EW, Clark WC, Glusman M (1984) Pain sensitivity, mood and plasma endocrine levels in man following long-distance running: effects of naloxone. Pain 19:13–25

    Article  PubMed  CAS  Google Scholar 

  • Johnson MH, Petrie SM (1997) The effects of distraction on exercise and cold pressor tolerance for chronic low back pain sufferers. Pain 69:43–48

    Article  PubMed  CAS  Google Scholar 

  • Kanarek RB, Gerstein AV, Wildman RP, Mathes WF, D’Anci KE (1998) Chronic running-wheel activity decreases sensitivity to morphine-induced analgesia in male and female rats. Pharmacol Biochem Behav 61:19–27

    Article  PubMed  CAS  Google Scholar 

  • Keller S, Seraganian P (1984) Physical fitness level and autonomic reactivity to psychosocial stress. J Psychosom Res 28:279–287

    Article  PubMed  CAS  Google Scholar 

  • Kemppainen P, Pertovaara A, Huopaniemi T, Johansson G, Karonen SL (1985) Modification of dental pain and cutaneous thermal sensitivity by physical exercise in man. Brain Res Mol Brain Res 360:33–40

    CAS  Google Scholar 

  • Kemppainen P, Paalasmaa P, Pertovaara A, Alila A, Johansson G (1990) Dexamethasone attenuates exercise-induced dental analgesia in man. Brain Res 519:329–332

    Article  PubMed  CAS  Google Scholar 

  • Koltyn KF (2000) Analgesia following exercise – a review. Sports Med 29:85–98

    Article  PubMed  CAS  Google Scholar 

  • Koltyn KF (2002) Exercise-induced hypoalgesia and intensity of exercise. Sports Med 32:477–487

    Article  PubMed  Google Scholar 

  • Koltyn KF, Arbogast RW (1998) Perception of pain after resistance exercise. Br J Sports Med 32:20–24

    Article  PubMed  CAS  Google Scholar 

  • Koltyn KF, Umeda M (2006) Exercise, hypoalgesia and blood pressure. Sports Med 36:207–214

    Article  PubMed  Google Scholar 

  • Leone M, Proietti Cecchini A, Mea E, Tullo V, Curone M, Bussone G (2006) Neuroimaging and pain: a window on the autonomic nervous system. Neurol Sci 27(Suppl 2):S134–S137

    Article  PubMed  Google Scholar 

  • Lewis MJ, Short AL (2010) Exercise and cardiac regulation: what can electrocardiographic time series tell us? Scand J Med Sci Sports 20:794–804

    Article  PubMed  CAS  Google Scholar 

  • Macintosh BJ, Mraz R, McIlroy WE, Graham SJ (2007) Brain activity during a motor learning task: an fMRI and skin conductance study. Hum Brain Mapp 28:1359–1367

    Article  PubMed  Google Scholar 

  • Marek P, Mogil JS, Sternberg WF, Panocka I, Liebeskind JC (1992) N-methyl-D-aspartic acid (NMDA) receptor antagonist MK-801 blocks non-opioid stress-induced analgesia. II. Comparison across three swim-stress paradigms in selectively bred mice. Brain Res 578:197–203

    Article  PubMed  CAS  Google Scholar 

  • Mathes WF, Kanarek RB (2001) Wheel running attenuates the antinociceptive properties of ­morphine and its metabolite, morphine-6-glucuronide, in rats. Physiol Behav 74:245–251

    Article  PubMed  CAS  Google Scholar 

  • Mathes WF, Kanarek RB (2006) Chronic running wheel activity attenuates the antinociceptive actions of morphine and morphine-6-glucouronide administration into the periaqueductal gray in rats. Pharmacol Biochem Behav 83:578–584

    Article  PubMed  CAS  Google Scholar 

  • Mobascher A, Brinkmeyer J, Warbrick T, Musso F, Wittsack HJ, Stoermer R, Saleh A, Schnitzler A, Winterer G (2009) Fluctuations in electrodermal activity reveal variations in single trial brain responses to painful laser stimuli – a fMRI/EEG study. Neuroimage 44:1081–1092

    Article  PubMed  CAS  Google Scholar 

  • Moya-Albiol L, Salvador A, Costa R, Martinez-Sanchis S, Gonzalez-Bono E, Ricarte J, Arnedo M (2001) Psychophysiological responses to the Stroop Task after a maximal cycle ergometry in elite sportsmen and physically active subjects. Int J Psychophysiol 40:47–59

    Article  PubMed  CAS  Google Scholar 

  • Neziri AY, Curatolo M, Nuesch E, Scaramozzino P, Andersen OK, Arendt-Nielsen L, Juni P (2011) Factor analysis of responses to thermal, electrical, and mechanical painful stimuli supports the importance of multi-modal pain assessment. Pain 152:1146–1155

    Article  PubMed  Google Scholar 

  • Olausson B, Eriksson E, Ellmarker L, Rydenhag B, Shyu BC, Andersson SA (1986) Effects of naloxone on dental pain threshold following muscle exercise and low frequency transcutaneous nerve stimulation: a comparative study in man. Acta Physiol Scand 126:299–305

    Article  PubMed  CAS  Google Scholar 

  • Padawer WJ, Levine FM (1992) Exercise-induced analgesia: fact or artifact? Pain 48:131–135

    Article  PubMed  CAS  Google Scholar 

  • Parati G, Casadei R, Groppelli A, Di Rienzo M, Mancia G (1989) Comparison of finger and intra-arterial blood pressure monitoring at rest and during laboratory testing. Hypertension 13:647–655

    Article  PubMed  CAS  Google Scholar 

  • Perkins BA, Bril V (2003) Diabetic neuropathy: a review emphasizing diagnostic methods. Clin Neurophysiol 114:1167–1175

    Article  PubMed  Google Scholar 

  • Pertovaara A, Kemppainen P (1992) Comments on Padawer and Levine, PAIN, 48 (1992) 132-135. Pain 50:239–240, author reply 242–233

    Article  PubMed  CAS  Google Scholar 

  • Pestronk A, Florence J, Levine T, Al-Lozi MT, Lopate G, Miller T, Ramneantu I, Waheed W, Stambuk M (2004) Sensory exam with a quantitative tuning fork: rapid, sensitive and predictive of SNAP amplitude. Neurology 62:461–464

    Article  PubMed  CAS  Google Scholar 

  • Pumprla J, Howorka K, Groves D, Chester M, Nolan J (2002) Functional assessment of heart rate ­variability: physiological basis and practical applications. Int J Cardiol 84(1):1–14. Review

    Article  PubMed  CAS  Google Scholar 

  • Rolke R, Baron R, Maier C, Tolle TR, Treede RD, Beyer A, Binder A, Birbaumer N, Birklein F, Botefur IC, Braune S, Flor H, Huge V, Klug R, Landwehrmeyer GB, Magerl W, Maihofner C, Rolko C, Schaub C, Scherens A, Sprenger T, Valet M, Wasserka B (2006a) Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): standardized protocol and reference values. Pain 123:231–243

    Article  PubMed  CAS  Google Scholar 

  • Rolke R, Magerl W, Campbell K, Schalber C, Caspari S, Birklein F, Treede R (2006b) Quantitative sensory testing: a comprehensive protocol for clinical trials. Eur J Pain 10:77–88

    Article  PubMed  CAS  Google Scholar 

  • Ruble SB, Hoffman MD, Shepanski MA, Valic Z, Buckwalter JB, Clifford PS (2005) Thermal pain perception after aerobic exercise. Arch Phys Med Rehabil 86:1019–1023

    Article  PubMed  Google Scholar 

  • Sandkuhler J (1996) The organization and function of endogenous antinociceptive systems. Prog Neurobiol 50:49–81

    PubMed  CAS  Google Scholar 

  • Sheps DS, Adams KF, Hinderliter A, Price C, Bissette J, Orlando G, Margolis B, Koch G (1987) Endorphins Are Related to Pain Perception in Coronary-Artery Disease. Am J Cardiol 59:523–527

    Article  PubMed  CAS  Google Scholar 

  • Shyu BC, Andersson SA, Thoren P (1982) Endorphin mediated increase in pain threshold induced by long-lasting exercise in rats. Life Sci 30:833–840

    Article  PubMed  CAS  Google Scholar 

  • Susser E, Sprecher E, Yarnitsky D (1999) Paradoxical heat sensation in healthy subjects: peripherally conducted by A delta or C fibres? Brain 122(Pt 2):239–246

    Article  PubMed  Google Scholar 

  • Treede RD (2011) Das somatosensorische System. In: Schmidt RF, Lang F, Heckmann M (eds) Physiologie des Menschen. Springer, Heidelberg, pp 297–323

    Google Scholar 

  • Umeda M, Newcomb LW, Koltyn KF (2009) Influence of blood pressure elevations by isometric exercise on pain perception in women. Int J Psychophysiol 74:45–52

    Article  PubMed  Google Scholar 

  • Umeda M, Newcomb LW, Ellingson LD, Koltyn KF (2010) Examination of the dose-response relationship between pain perception and blood pressure elevations induced by isometric ­exercise in men and women. Biol Psychol 85:90–96

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Valet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Valet, M., Sprenger, T., Scheef, L., Boecker, H. (2012). Assessing Somatosensory Profiles and Autonomic Nervous System Responses in Physical Exercise Studies. In: Boecker, H., Hillman, C., Scheef, L., Strüder, H. (eds) Functional Neuroimaging in Exercise and Sport Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3293-7_7

Download citation

Publish with us

Policies and ethics