Skip to main content

Combinatorial Optimization and Coalition Games

  • Chapter
Handbook of Combinatorial Optimization

Abstract

Studies on games in coalition form deal with the power of cooperation among its participants. In this sense it is often referred to as cooperative game theory. In a simple mathematical formulation, we have a set N of agents, and a value function υ : 2NR where, for each subset S ⊆ N, , υ (S) represents the value obtained by the coalition of agents of the subset S without assistance of other agents, with υ(ø) = 0. Individual income can be represented by a vector x : NR. We consider games with side payments. The main issue here is how to fairly distribute the income collectively earned by a group of cooperating participants in the game. For simplicity, we write x(S) = Σ iS x i . A vector x is called an imputation if x(N) = υ(N), and ∀iN : x i υ({i}) (individual rationality).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.J. Aumann and M. Maschler, The Bargaining Set of Cooperative Games, in M. Dresher, L.S. Shapley and A.W. Tucker (eds.) Advances in Game Theory, (Princeton University Press, Princeton, 1964) pp. 443–447.

    Google Scholar 

  2. J. F. Banzhaf, Weighted Voting Doesn’t Work: A Mathematical Analysis, Rutgers Law Reviews Vol. 19 (1965) pp. 317–343.

    Google Scholar 

  3. C.G. Bird, Cost-allocation for a spanning tree, Networks 6 (1976) pp. 335–350.

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Claus, and D. Granot, Game Theory Application to Cost Allocation for a Spanning Tree, Working Paper No 402, (Faculty of Commerce and Business Administration, University of British Columbia, June 1976 ).

    Google Scholar 

  5. A. Claus, and D.J. Kleitman, Cost Allocation for a Spanning Tree, Networks Vol. 3 (1973) pp. 289–304.

    Article  MATH  MathSciNet  Google Scholar 

  6. W. H. Cunningham, On Submodular Function Minimization, Combinatorica Vol. 5 (1985) pp. 185–192.

    Article  MATH  MathSciNet  Google Scholar 

  7. I. J. Curiel, Cooperative Game Theory and Applications, Ph.D. dissertation, (University of Nijmegen, the Netherlands, 1988 ).

    Google Scholar 

  8. M. Davis, and M. Maschler, The Kernel of a Cooperative Game, Naval Research Logistics Quarterly Vol. 12 (1965) pp. 223–295.

    Article  MATH  MathSciNet  Google Scholar 

  9. X. Deng, Mathematical Programming: Complexity and Algorithms, PhD Thesis, Department of Operations Research, Stanford University, California (1989).

    Google Scholar 

  10. X. Deng, T. Ibaraki and H. Nagamochi, Combinatorial Optimization Games, Proceedings 8th Annual ACM-SIAM Symposium on Discrete Algorithms, ( New Orleans, LA, 1997 ) pp. 720–729.

    Google Scholar 

  11. X. Deng and C. Papadimitriou, On the Complexity of Cooperative Game Solution Concepts, Mathematics of Operations Research Vol. 19, No. 2 (1994) pp. 257–266.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. Dror, Cost Allocation: The Traveling Salesman, Binpacking, and the Knapsack, Technical Report, INRS Telecommuincations, Quebac, Canada (1987).

    Google Scholar 

  13. P. Dubey, and L.S. Shapley, Mathematical Properties of the Banzhaf Power Index, Mathematics of Operations Research Vol. 4 (1979) pp. 99–131.

    Article  MATH  MathSciNet  Google Scholar 

  14. P. Dubey, and L.S. Shapley, Totally Balanced Games Arising from Controlled Programming Problems, Mathematical Programming Vol. 29 (1984) pp. 245–267.

    Article  MATH  MathSciNet  Google Scholar 

  15. J. Edmonds, Path, Tree, and Flowers, Canadian Journal of Mathematics Vol. 17 (1965) pp. 449–469.

    Article  MATH  MathSciNet  Google Scholar 

  16. J. Edmonds, Optimum Branchings, National Bureau of Standards Journal of Research Vol. 69B (1967) pp. 125–130.

    MathSciNet  Google Scholar 

  17. U. Faigle, S. Fekete, W. Hochstättler and W. Kern, On Approximately Fair Cost Allocation in Euclidean TSP Games, (Technical Report, Department of Applied Mathematics, University of Twente, The Netherlands, 1994 ).

    Google Scholar 

  18. U. Faigle, S. Fekete, W. Hochstättler and W. Kern, On the Complexity of Testing Membership in the Core of Min-cost Spanning Tree Games, International Journal of Game Theory Vol 26 (1997) pp. 361–366.

    Article  MATH  MathSciNet  Google Scholar 

  19. U. Faigle, S. Fekete, W. Hochstättler and W. Kern, The Nukleon of Cooperative Games and an Algorithm for Matching Games, (Technical Report #94. 178, Universität zu Köln, Germany, 1994 ).

    Google Scholar 

  20. U. Faigle and W. Kern, Partition games and the core of hierarchically convex cost games, (Universiteit Twente, faculteit der toegepaste wiskunde, Memorandum, No. 1269, June 1995 ).

    Google Scholar 

  21. D. Gillies, Solutions to General Nonzero Sum Games, Annals of Mathematical Studies Vol. 40 (1959) pp. 47–85

    MATH  MathSciNet  Google Scholar 

  22. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness, (W.H. Freeman & Company, Publishers, San Francisco, 1979 ).

    MATH  Google Scholar 

  23. D. Granot, A Note on the Roommate Problem and a Related Revenue Allocation Problem, Management Science Vol. 30 (1984) pp. 633–643.

    Article  MATH  Google Scholar 

  24. D. Granot, A Generalized Linear Production Model: A Unified Model, Mathematical Programming Vol. 34 (1986) pp. 212–222.

    Article  MATH  MathSciNet  Google Scholar 

  25. D. Granot, and G. Huberman, On the Core and Nucleolus of Minimum Cost Spanning Tree Games, Mathematical Programming Vol. 29 (1984) pp. 323–347.

    Article  MATH  MathSciNet  Google Scholar 

  26. M. Grötschel, L. Lovâsz and A. Schrijver, Geometric Algorithms and Combinatorial Optimization, ( Springer-Verlag, Hong Kong, 1988 ).

    MATH  Google Scholar 

  27. A. Hallefjord, R. Helming, and K. Jornsten, Computing the Nucleolus when the Characteristic Function is Given Implicitly: A Constraint Generation Approach, International Journal of Game Theory, Vol. 24 (1995) pp. 357–372.

    Article  MATH  MathSciNet  Google Scholar 

  28. Herber Hamers, Daniel Granot, and Stef Tijs, On Some Balanced, Totally Balanced and Submodular Delivery Games, Program and Abstract of 16th International Symposium on Mathematical Programming (1997) p. 118.

    Google Scholar 

  29. E. Kalai, Games, Computers, and O.R., Proceedings of the 6th ACM/SIAM Symposium on Discrete Algorithms, (1995) pp. 468–473.

    Google Scholar 

  30. E. Kalai and E. Zemel, Totally Balanced Games and Games of Flow, Mathematics of Operations Research Vol. 7 (1982) pp. 476–478.

    Article  MATH  MathSciNet  Google Scholar 

  31. E. Kalai and E. Zemel, Generalized Network Problems Yielding Totally Balanced Games, Operations Research Vol. 30 (1982) pp. 998–1008.

    Article  MATH  Google Scholar 

  32. Jeroen Kuipers, Minimum Cost Forest Games, International Journal of Game Theory Vol. 26 (1997) pp. 367–377.

    Article  MATH  MathSciNet  Google Scholar 

  33. Jeroen Kuipers, A Polynomial Time Algorithm for Computing the Nucleolus of Convex Games, Program and Abstracts of the 16th International Symposium on Mathematical Programming (1997) p. 156.

    Google Scholar 

  34. S.C. Littlechild, A Simple Expression for the Nucleolus in a Special Case, International Journal of Game Theory Vol. 3 (1974) pp. 21–29.

    Article  MATH  MathSciNet  Google Scholar 

  35. S.C. Littlechild and G. Owen, A Simple Expression for the Shapley Value in a Special Case, Management Science Vol. 20 (1973) pp. 370–372.

    Article  MATH  Google Scholar 

  36. W. F. Lucas, The proof that a game may not have a solution, Transactions of the American Mathematical Society vol. 137 pp. 219–229.

    Google Scholar 

  37. A. Mas-Colell, An Equivalence Theorem for a Bargaining Set, Journal of Mathematical Economics Vol. 18 (1989) pp. 129–139.

    Article  MATH  MathSciNet  Google Scholar 

  38. N. Megiddo, Computational Complexity and the game theory approach to cost allocation for a tree, Mathematics of Operations Research Vol. 3 (1978) pp. 189–196.

    Article  MATH  MathSciNet  Google Scholar 

  39. N. Megiddo, Cost Allocation for Steiner Trees, Networks Vol. 8 (1978) pp. 1–6.

    Article  MATH  MathSciNet  Google Scholar 

  40. M. Maschler, B. Peleg, L. S. Shapley, The Kernel and Bargaining Set for Convex Games, International Journal of Game Theory Vol. 1 (1972) pp. 73–93.

    Article  MathSciNet  Google Scholar 

  41. J.F., Jr., Nash, Equilibrium Points in n-person Games, Proceedings of the National Academy of Science U.S.A. Vol. 36 (1950) pp. 48–49.

    Article  MATH  MathSciNet  Google Scholar 

  42. H. Nagamochi, D. Zeng, N. Kabutoya and T. Ibaraki, Complexity of the Minimum Base Games on Matroids, to appear in Mathematics of Operations Research.

    Google Scholar 

  43. A. Neyman, Bounded Complexity Justifies Cooperation in the Finitely Repeated Prisoner’s Dilemma,“ Economics Letters. Vol 19 (1985) pp. 227–229.

    Article  MathSciNet  Google Scholar 

  44. G. Owen, On the core of Linear Production Games, Mathematical Programming. Vol 9 (1975) pp. 358–370.

    Article  MATH  MathSciNet  Google Scholar 

  45. C. H. Papadimitriou and M. Yannakakis, On Complexity as Bounded Rationality, Proceedings of the 26th ACM Symposium on the Theory of Computing, (1994) pp. 726–733.

    Google Scholar 

  46. J. Potters, I. Curiel, and S. Tijs, Traveling Salesman Games, Mathematical Programming Vol. 53 (1992) pp. 199–211.

    Article  MATH  MathSciNet  Google Scholar 

  47. F. Sanchez S., Balanced Contribution Axiom in the Solution of Cooperative Games, Games and Economic Behavior Vol. 20 (1997) pp. 161–168.

    Article  MATH  MathSciNet  Google Scholar 

  48. D. Schmeidler, The Nucleolus of a Characteristic Function Game, SIAM Journal of Applied Mathematics Vol. 17 (1969) pp. 1163–1170.

    Article  MATH  MathSciNet  Google Scholar 

  49. L. S. Shapley, On Balanced Sets and Cores, Naval Research Logistics Quarterly Vol. 14 (1967) pp. 453–460.

    Article  Google Scholar 

  50. L. S. Shapley, A Value for n-person Games, in H. Kuhn and A.W. Tucker (eds.) Contributions to the Theory of Games Vol. II ( Princeton University Press, Princeton, 1953 ) pp. 307–317.

    Google Scholar 

  51. L. S. Shapley, Cores of Convex Games, Int. J. of Game Theory Vol. 1, pp. 11–26, 1972.

    Article  Google Scholar 

  52. L. S. Shapley, and M. Shubik, On Market Games, J. Econ. Theory Vol. 1 (1969) pp. 9–25.

    Article  MathSciNet  Google Scholar 

  53. L. S. Shapley, and M. Shubik, The Assignment Game, International Journal of Game Theory Vol. 1 (1972) pp. 111–130.

    Article  MathSciNet  Google Scholar 

  54. M. Shubik, Game Theory Models and Methods in Political Economy, in Arrow and Intriligator (eds.) Handbook of Mathematical Economics, Vol. I, (North-Holland, New York, 1981 ) pp. 285–330.

    Google Scholar 

  55. H. Simon, Theories of Bounded Rationality, in R. Radner (eds.) Decision and Organization, (North Holland, 1972 ).

    Google Scholar 

  56. A. Tamir On the Core of Cost Allocation Games Defined on Location Problems, Preprints, Second International conference on Locational Decisions (ISOLDE 81) ( Skodsborg, Denmark, 1981 ) pp. 387–402.

    Google Scholar 

  57. A. Tamir On the Core of a Traveling Salesman Cost Allocation Game, Operations Research Letters Vol. 8 (1989) pp. 31–34.

    Article  MATH  MathSciNet  Google Scholar 

  58. A. Tamir On the Core of Network Synthesis Gaines, Mathematical Programming Vol. 50 (1991) pp. 123–135.

    Article  MATH  MathSciNet  Google Scholar 

  59. A. Tamir and J.S.B. Mitchell, A maximum b-matching problem arising from median location models with applications to the roommate problem, To appear in Mathematical Programming.

    Google Scholar 

  60. S. Tijs Bounds for the Core and the T-value, in O. Moeschlin and P. Pallaschke (eds.) Game Theory and Mathematical Economics, (North Holland Publishing Company, 1981) pp.123–132.

    Google Scholar 

  61. J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior ( Princeton University Press, Princeton, 1944 ).

    MATH  Google Scholar 

  62. W. Zang, and X. Deng, manuscript.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this chapter

Cite this chapter

Deng, X. (1998). Combinatorial Optimization and Coalition Games. In: Du, DZ., Pardalos, P.M. (eds) Handbook of Combinatorial Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0303-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0303-9_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7987-4

  • Online ISBN: 978-1-4613-0303-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics