Skip to main content

Endoplasmic Reticulum Stress as a Primary Pathogenic Mechanism Leading to Age-Related Macular Degeneration

  • Chapter
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 664))

Abstract

Age-related macular degeneration (AMD) is a multi-factorial disease and a leading cause of blindness. Proteomic and genetic data suggest that activation or de-repression of the alternate complement cascade of innate immunity is involved in end-stage disease. Several lines of evidence suggest that production of reactive oxygen species and chronic oxidative stress lead to protein and lipid modifications that initiate the complement cascade. Understanding the triggers of these pathogenic pathways and the site of the primary insult will be important for development of targeted therapeutics. Endoplasmic reticulum (ER) stress from misfolded mutant proteins and other sources are an important potential tributary mechanism. We propose that misfolded-protein-induced ER stress in the retinal-pigmented epithelium and/or choroid could lead to chronic oxidative stress, complement deregulation and AMD. Small molecules targeted to ER stress and oxidative stress could allow for a shift from disease treatment to disease prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Banhegyi G, Benedetti A, Csala M et al (2007) Stress on redox. FEBS Lett 581:3634–3640

    Article  CAS  PubMed  Google Scholar 

  • Bateman JF, Boot-Handford RP, Lamandé SR (2009) Genetic diseases of connective tissues: cellular and extracellular effects of ECM mutations. Nat Rev Genet 10:173–183

    Article  CAS  PubMed  Google Scholar 

  • Bazan NG (2006) Survival signaling in retinal pigment epithelial cells in response to oxidative stress: significance in retinal degenerations. Adv Exp Med Biol 572:531–540

    Article  CAS  PubMed  Google Scholar 

  • Beatty S, Koh H, Phil M et al (2000) The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 45:115–134

    Article  CAS  PubMed  Google Scholar 

  • Cho E, Hung S, Willett WC et al (2001) Prospective study of dietary fat and the risk of age-related macular degeneration. Am J Clin Nutr 73:209–218

    CAS  PubMed  Google Scholar 

  • Crabb JW, Miyagi M, Gu X et al (2002) Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci U S A 99:14682–14687

    Article  CAS  PubMed  Google Scholar 

  • de Boer OJ, van der Wal AC, Becker AE (2000) Atherosclerosis, inflammation, and infection. J Pathol 190:237–243

    Article  PubMed  Google Scholar 

  • Decanini A, Nordgaard C, Feng X et al (2007) Changes in select redox proteins of the retinal pigment epithelium in age-related macular degeneration. Am J Ophthalmol 143(4):607–615, e602

    Article  CAS  PubMed  Google Scholar 

  • Deng J, Lu PD, Zhang Y et al (2004) Translational repression mediates activation of nuclear factor kappa B by phosphorylated translation initiation factor 2. Mol Cell Biol 24:10161–10168

    Article  CAS  PubMed  Google Scholar 

  • Dong A, Xie B, Shen J et al (2009) Oxidative stress promotes ocular neovascularization. J Cell Physiol 219(3):544–552

    Article  CAS  PubMed  Google Scholar 

  • Edwards AO, Ritter R, Abel KJ et al (2005) Complement factor H polymorphism and age-related macular degeneration. Science 308:421–424

    Article  CAS  PubMed  Google Scholar 

  • Friedman E, Krupsky S, Lane A et al (1995) Ocular blood flow velocity in age-related macular degeneration. Ophthalmology 102:640–646

    CAS  PubMed  Google Scholar 

  • Group A-REDSR (2001) A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol 119:1417–1436

    Google Scholar 

  • Hageman GS, Anderson DH, Johnson LV et al (2005) A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci U S A 102:7227–7232

    Article  CAS  PubMed  Google Scholar 

  • Hageman GS, Luthert PJ, Victor Chong NH et al (2001) An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in aging and age-related macular degeneration. Prog Retin Eye Res 20:705–732

    Article  CAS  PubMed  Google Scholar 

  • Hageman GS, Mullins RF, Russell SR et al (1999) Vitronectin is a constituent of ocular drusen and the vitronectin gene is expressed in human retinal pigmented epithelial cells. FASEB J 13:477–484

    CAS  PubMed  Google Scholar 

  • Haines JL, Hauser MA, Schmidt S et al (2005) Complement factor H variant increases the risk of age-related macular degeneration. Science 308:419–421

    Article  CAS  PubMed  Google Scholar 

  • Hollyfield JG, Bonilha VL, Rayborn ME et al (2008) Oxidative damage-induced inflammation initiates age-related macular degeneration. Nat Med 14:194–198

    Article  CAS  PubMed  Google Scholar 

  • Hu P, Han Z, Couvillon AD et al (2006) Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1alpha-mediated NF-kappaB activation and down-regulation of TRAF2 expression. Mol Cell Biol 26:3071–3084

    Article  CAS  PubMed  Google Scholar 

  • Imamura Y, Noda S, Hashizume K et al (2006) Drusen, choroidal neovascularization, and retinal pigment epithelium dysfunction in SOD1-deficient mice: a model of age-related macular degeneration. Proc Natl Acad Sci U S A 103:11282–11287

    Article  CAS  PubMed  Google Scholar 

  • Javitt J (2003) Incidence of exudative age-related macular degeneration among elderly americans. Ophthalmology 110:1534–1539

    Article  PubMed  Google Scholar 

  • Jiang HY, Wek SA, McGrath BC et al (2003) Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 is required for activation of NF-kappaB in response to diverse cellular stresses. Mol Cell Biol 23:5651–5663

    Article  CAS  PubMed  Google Scholar 

  • Kalayoglu MV, Bula D, Arroyo J et al (2005) Identification of Chlamydia pneumoniae within human choroidal neovascular membranes secondary to age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 243:1080–1090

    Article  PubMed  Google Scholar 

  • Klaver CC, Assink JJ, van Leeuwen R et al (2001) Incidence and progression rates of age-related maculopathy: The Rotterdam Study. Invest Ophthalmol Vis Sci 42:2237–2241

    CAS  PubMed  Google Scholar 

  • Klaver CC, Wolfs RC, Assink JJ et al (1998) Genetic risk of age-related maculopathy. Population-based familial aggregation study. Arch Ophthalmol 116:1646–1651

    CAS  PubMed  Google Scholar 

  • Klein R, Klein BE, Linton KL (1992) Prevalence of age-related maculopathy. The Beaver Dam Eye Study. Ophthalmology 99:933–943

    CAS  PubMed  Google Scholar 

  • Klein R, Klein BE, Linton KL et al (1993) The Beaver Dam Eye Study: the relation of age-related maculopathy to smoking. Am J Epidemiol 137:190–200

    CAS  PubMed  Google Scholar 

  • Klein RJ, Zeiss C, Chew EY et al (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308:385–389

    Article  CAS  PubMed  Google Scholar 

  • Marciniak SJ, Ron D (2006) Endoplasmic reticulum stress signaling in disease. Physiol Rev 86:1133–1149

    Article  CAS  PubMed  Google Scholar 

  • Mullins RF, Russell SR, Anderson DH et al (2000) Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. FASEB J 14:835–846

    CAS  PubMed  Google Scholar 

  • Sauer T, Patel M, Chan CC et al (2008) Unfolding the therapeutic potential of chemical chaperones for age-related macular degeneration. Expert Rev Ophthalmol 3:29–42

    Article  CAS  PubMed  Google Scholar 

  • Seddon JM, Cote J, Rosner B (2003) Progression of age-related macular degeneration: association with dietary fat, transunsaturated fat, nuts, and fish intake. Arch Ophthalmol 121:1728–1737

    Article  PubMed  Google Scholar 

  • Sevier C, Kaiser C (2008) Ero1 and redox homeostasis in the endoplasmic reticulum. Biochim Biophy Acta 1783:549–556

    Article  CAS  Google Scholar 

  • Shen JK, Dong A, Hackett SF et al (2007) Oxidative damage in age-related macular degeneration. Histol Histopathol 22:1301–1308

    CAS  PubMed  Google Scholar 

  • Sitia R, Molteni SN (2004) Stress, protein (mis)folding, and signaling: the redox connection. Sci STKE 239:e27

    Google Scholar 

  • Sparrow JR, Zhou J, Ben-Shabat S et al (2002) Involvement of oxidative mechanisms in blue-light-induced damage to A2E-laden RPE. Invest Ophthalmol Vis Sci 43:1222–1227

    PubMed  Google Scholar 

  • Suzuki M, Kamei M, Itabe H et al (2007) Oxidized phospholipids in the macula increase with age and in eyes with age-related macular degeneration. Mol Vis 13:772–778

    CAS  PubMed  Google Scholar 

  • Tan JS, Wang J, Flood V et al (2007) Dietary antioxidants and the long-term incidence of age-related macular degeneration. The Blue Mountains Eye Study. Ophthalmology 115:334–341

    Article  PubMed  Google Scholar 

  • Taylor HR, Muñoz B, West S et al (1990) Visible light and risk of age-related macular degeneration. Trans Am Ophthalmol Soc 88:163–173

    CAS  PubMed  Google Scholar 

  • Vingerling JR, Dielemans I, Bots ML et al (1995) Age-related macular degeneration is associated with atherosclerosis. The Rotterdam Study. Am J Epidemiol 142:404–409

    CAS  PubMed  Google Scholar 

  • Wong RW, Richa DC, Hahn P et al (2007) Iron toxicity as a potential factor in AMD. Retina 27:997–1003

    Article  PubMed  Google Scholar 

  • Wu Z, Lauer T, Sick A et al (2007) Oxidative stress modulates complement factor H expression in retinal pigmented epithelial cells by acetylation of FOXO3. J Biol Chem 282:22414–22425

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Shen X, Wu J et al (2006) Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell 124:587–599

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Jang YP, Kim SR et al (2006) Complement activation by photooxidation products of A2E, a lipofuscin constituent of the retinal pigment epithelium. Proc Natl Acad Sci U S A 103:16182–16187

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas B. Gould .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Libby, R.T., Gould, D.B. (2010). Endoplasmic Reticulum Stress as a Primary Pathogenic Mechanism Leading to Age-Related Macular Degeneration. In: Anderson, R., Hollyfield, J., LaVail, M. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 664. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1399-9_46

Download citation

Publish with us

Policies and ethics