Skip to main content

Agent-Based Modeling of Ductal Carcinoma In Situ: Application to Patient-Specific Breast Cancer Modeling

  • Chapter
  • First Online:
Computational Biology

Abstract

Ductal carcinoma in situ (DCIS) of the breast is the most common precursor to invasive carcinoma (IC), the second-leading cause of death in women in USA. There has been great progress in modeling DCIS at both the cellular scale (e.g., using cellular automata and agent-based models) and the population scale (e.g., using partial differential equations or systems of ordinary differential equations), but these past efforts have been difficult to calibrate with patient-specific molecular and cellular measurements. We develop a biophysically justified, agent-based cellular model of DCIS that is well-suited to patient-specific calibration. The model is modular in nature and can thus be readily extended to incorporate more advanced biology. We give an example of recently developed, patient-specific calibration of the model and conduct parameter studies that generate testable biological hypotheses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    While using the interarrival time ordinarily gives probability of having at least one proliferation event (rather than precisely one) in the interval (t, t + Δt], our form of αP in (4.10) precludes this, because αP decreases to zero until completing proliferation.

References

  • Adalsteinsson D, Sethian JA (1999) The fast construction of extension velocities in level set methods. J Comput Phys 148(1):2–22. doi:10.1006/jcph.1998.6090

    Article  Google Scholar 

  • Adamovich TL, Simmons RM (2003) Ductal carcinoma in situ with microinvasion. Am J Surg 186(2):112–116. doi:10.1016/S0002-9610(03)00166-1

    Article  PubMed  Google Scholar 

  • Ai L, Kim WJ, Kim TY, Fields CR, Massoll NA, Robertson KD, Brown KD (2006) Epigenetic silencing of the tumor suppressor cystatin m occurs during breast cancer progression. Cancer Res 66:7899–7909

    Article  PubMed  CAS  Google Scholar 

  • American Cancer Society (2007) American cancer society breast cancer facts and figures 2007–2008. American Cancer Society, Inc., Atlanta. http://www.cancer.org/downloads/STT/ BCFF-Final.pdf

  • Anderson E (2004) Cellular homeostasis and the breast. Maturitas 48(S1):13–17. doi:10.1016/j. maturitas.2004.02.010

    Google Scholar 

  • Anderson ARA, Weaver AM, Cummings PT, Quaranta V (2006) Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127(5):905–915. doi:10.1016/j.cell.2006.09.042

    Article  PubMed  CAS  Google Scholar 

  • Armstrong PB (1971) Light and electron microscope studies of cell sorting in combinations of chick embryo neural retina and retinal pigment epithelium. Wilhelm Roux’ Arch 168:125–141

    Article  Google Scholar 

  • Bankhead III A, Magnuson NS, Heckendorn RB (2007) Cellular automaton simulation examining progenitor heirarchy structure effects on mammary ductal carcinoma in situ. J Theor Biol 246(3):491–498. doi:10.1016/j.jtbi.2007.01.011

    Article  PubMed  Google Scholar 

  • Barros LF, Hermosilla T, Castro J (2001) Necrotic volume increase and the early physiology of necrosis. Comp Biochem Physiol A Mol Integr Physiol 130:401–409

    Article  PubMed  CAS  Google Scholar 

  • Baxter FO, Neoh K, Tevendale MC (2007) The beginning of the end: Death signaling in early involution. J Mamm Gland Biol Neoplasia 12(1):3–13. doi:10.1007/s10911-007-9033-9

    Article  Google Scholar 

  • Bienz M, Clevers H (2000) Linking colorectal cancer to Wnt signaling. Cell 103:311–320

    Article  PubMed  CAS  Google Scholar 

  • Butler LM, Khan S, Rainger GE, Nash GB (2008) Effects of endothelial basement membrane on neutrophil adhesion and migration. Cell Immunol 251:56–61. doi:10.1016/j.cellimm. 2008.04.004

    Article  PubMed  CAS  Google Scholar 

  • Byers SM, Sommers CL, Hoxter B, Mercurio AM, Tozeren A (1995) Role of e-cadherin in the response of tumor cell aggregates to lymphatic, venous, and arterial flow: measurement of cell–cell adhesion strength. J Cell Sci 108(5):2053–2064

    PubMed  CAS  Google Scholar 

  • Byrne H, Drasdo D (2009) Individual-based and continuum models of growing cell populations: a comparison. J Math Biol 58(4–5):657–687. doi:10.1007/s00285-008-0212-0

    Article  PubMed  Google Scholar 

  • Byrne HM, Alarcon T, Owen MR, Webb SD, Maini PK (2006) Modelling cancer dynamics: a review. Philos Trans R Soc A 364:1563–1578. doi:10.1098/rsta.2006.1786

    Article  CAS  Google Scholar 

  • Cabioglu N, Hunt KK, Sahin AA, Kuerer HM, Babiera GV, Singletary SE, Whitman GJ, Ross MI, Ames FC, Feig BW, Buchholz TA, Meric-Bernstam F (2007) Role for intraoperative margin assessment in patients undergoing breast-conserving surgery. Ann Surg Oncol 14(4):1458–1471

    Article  PubMed  Google Scholar 

  • Cheng L, Al-Kaisi NK, Gordon NH, Liu AY, Gebrail F, Shenk RR (1997) Relationship between the size and margin status of ductal carcinoma in situ of the breast and residual disease. J Natl Cancer Inst 89(18):1356–1360

    Article  PubMed  CAS  Google Scholar 

  • Chuang YL, Edgerton ME, Macklin P, Wise S, Lowengrub JS, Cristini V (in preparation) Clinical predictions of bulk DCIS properties based on a duct-scale mixture model

    Google Scholar 

  • Ciatto S, Bianchi S, Vezzosi V (1994) Mammographic appearance of calcifications as a predictor of intraductal carcinoma histologic subtype. Eur Radiol 4(1):23–26. doi:10.1007/BF00177382

    Article  Google Scholar 

  • Collins LC, Tamimi RM, Baer HJ, Connolly JL, Colditz GA, Schnitt SJ (2005) Outcome of patients with ductal carcinoma in situ untreated after diagnostic biopsy: results from the Nurses’ Health Study. Cancer 103(9):1778–1784

    Article  PubMed  Google Scholar 

  • Cotran RS, Kumar V, Robbins SL (1994) Robbins Pathologic Basis of Disease, 5th edn. W.B. Saunders, Philadelphia, PA

    Google Scholar 

  • Cristini V, Lowengrub JS (in press) Multiscale Modeling of Cancer. Cambridge University Press, New York, NY

    Google Scholar 

  • Cristini V, Lowengrub JS, Nie Q (2003) Nonlinear simulation of tumor growth. J Math Biol 46:191–224. doi:10.1007/s00285-002-0174-6

    Article  PubMed  Google Scholar 

  • Danes CG, Wyszomierski SL, Lu J, Neal CL, Yang W, Yu D (2008) 14-3-3ζ down-regulates p53 in mammary epithelial cells and confers luminal filling. Cancer Res 68:1760–1767. doi:10.1158/0008-5472.CAN-07-3177

    Article  PubMed  CAS  Google Scholar 

  • Dillon MF, McDermott EW, O’Doherty A, Quinn CM, Hill AD, O’Higgins N (2007) Factors affecting successful breast conservation for ductal carcinoma in situ. Ann Surg Oncol 14(5):1618–1628

    Article  PubMed  Google Scholar 

  • Dillon R, Owen M, Painter K (2008) A single-cell based model of multicellular growth using the immersed boundary method. In: Cheong K, Li Z, Lin P (eds) Moving interface problems and applications in fluid dynamics. AMS Contemporary Mathematics. American Mathematical Society, Providence, RI

    Google Scholar 

  • Duan WR, Garner DS, Williams SD, Funckes-Shippy CL, Spath IS, Blomme EAG (2003) Comparison of immunohistochemistry for activated caspase-3 and cleaved cytokeratin 18 with the TUNEL method for quantification of apoptosis in histological sections of PC-3 subcutaneous xenografts. J Pathol 199(2):221–228

    Article  PubMed  CAS  Google Scholar 

  • Edgerton M, Chuang YL, Kim J, Tomaiuolo G, Macklin P, Sanga S, Yang W, Broom A, Do KA, Cristini V (2008) Using mathematical models to understand the time dependence of the growth of ductal carcinoma in situ. In: 31st Annual San Antonio breast cancer symposium supplement to volume 68(24), Abstract 1165

    Google Scholar 

  • Edgerton ME, Macklin P, Chuang YL, Tomaiuolo G, Kim J, Sanga S, Broom A, Yang W, Do KA, Cristini V (in review) A Multiscale Mathematical Models for Improved Pre-Operative Estimates of Ductal Carcinoma in Situ Size, Canc. Res.

    Google Scholar 

  • Edgerton ME, Mannes K, Dudek S, Jensen R, Page D (in preparation-b) Pagetoid spread of ductal carcinoma in situ

    Google Scholar 

  • Franks SJ, Byrne HM, King JR, Underwood JCE, Lewis CE (2003a) Modelling the early growth of ductal carcinoma in situ of the breast. J Math Biol 47:424–452. doi:10.1007/s00285- 003-0214-x

    Article  PubMed  CAS  Google Scholar 

  • Franks SJ, Byrne HM, Mudhar H, Underwood JCE, Lewis CE (2003b) Modelling the growth of comedo ductal carcinoma in situ. Math Med Biol 20:277–308

    Article  PubMed  CAS  Google Scholar 

  • Franks SJ, Byrne HM, Underwood JCE, Lewis CE (2005) Biological inferences from a mathematical model of comedo ductal carcinoma in situ of the breast. J Theor Biol 232(4):523–543. doi:10.1016/j.jtbi.2004.08.032

    Article  PubMed  CAS  Google Scholar 

  • Frieboes HB, Zheng X, Sun CH, Tromberg B, Gatenby R, Cristini V (2006) An integrated computational/experimental model of tumor invasion. Cancer Res 66(3):1597–1604

    Article  PubMed  CAS  Google Scholar 

  • Frieboes HB, Lowengrub JS, Wise S, Zheng X, Macklin P, Cristini V (2007) Computer simulations of glioma growth and morphology. NeuroImage 37(S1):S59–S70. doi:10.1016/ j.neuroimage.2007.03.008

    Google Scholar 

  • Frieboes HB, Edgerton ME, Fruehauf JP, Rose FRAJ, Worrall LK, Gatenby RA, Ferrari M, Cristini V (2009) Prediction of drug response in breast cancer using integrative experimental/computational modeling. Cancer Res 69(10):4484–4492

    Article  PubMed  CAS  Google Scholar 

  • Gadeau AP, Chaulet H, Daret D, Kockx M, Daniel-Lamaziè JM, Desgranges C (2001) Time course of osteopontin, osteocalcin, and osteonectin accumulation and calcification after acute vessel wall injury. J Histochem Cytochem 49:79–86

    PubMed  CAS  Google Scholar 

  • Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H (1984) Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol 133(4):1710–1715

    PubMed  CAS  Google Scholar 

  • Going JJ, Mohun TJ (2006) Human breast duct anatomy, the sick lobe hypothesis and intraductal approaches to breast cancer. Breast Cancer Res Treat 97(3):285–291. http://dx.doi.org/10.1007/ s10549-005-9122-7

    Google Scholar 

  • Greenspan HP (1976) On the growth and stability of cell cultures and solid tumors J Theor Biol 56(1):229–242. doi:10.1016/S0022-5193(76)80054-9

    CAS  Google Scholar 

  • Guck J, Schinkinger S, Lincoln B, Wottawah F, Ebert S, Romeyke M, Lenz D, Erickson HM, Ananthakrishnan R, Mitchell D, Käs J, Ulvick S, Bilby C (2005) Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys J 88(5):3689–3698. doi:10.1529/biophysj.104.045476

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70. doi:10.1016/ S0092-8674(00)81683-9

    Article  PubMed  CAS  Google Scholar 

  • Hansen RK, Bissell MJ (2000) Tissue architecture and breast cancer: the role of extracellular matrix and steroid hormones. Endocr Relat Cancer 7(2):95–113. doi:10.1677/erc.0.0070095

    Article  PubMed  CAS  Google Scholar 

  • Harms BD, Bassi GM, Horwitz AR, Lauffenburger DA (2005) Directional persistence of EGF-induced cell migration is associated with stabilization of lamellipodial protrusions. Biophys J 88(2):1479–1488

    Article  PubMed  CAS  Google Scholar 

  • Hino Si, Tanji C, Nakayama KI, Kikuchi A (2005) Phosphorylation of β-catenin by cyclic AMP-dependent protein kinase stabilizes β-catenin through inhibition of its ubiquitination. Mol Cell Biol 25(20):9063–9072. doi:10.1128/MCB.25.20.9063-9072.2005

    Article  CAS  Google Scholar 

  • Hu Z, Yuri K, Ozawa H, Lu H, Kawata M (1997) The in vivo time course for elimination of adrenalectomy-induced apoptotic profiles from the granule cell layer of the rat hippocampus. J Neurosci 17(11):3981–3989

    PubMed  CAS  Google Scholar 

  • Ilic D, Almeida EA, Schlaepfer DD, Dazin P, Aizawa S, Damsky CH (1998) Extracellular matrix survival signals transduced by focal adhesion kinase suppress p53-mediated apoptosis. J Cell Biol 143:547–560

    Article  PubMed  CAS  Google Scholar 

  • Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ (2007) Cancer statistics, 2007. CA Cancer J Clin 57(1):43–66

    Article  PubMed  Google Scholar 

  • Jha MK, Avlontitis VS, Griffith CDM, Lennard TWJ, Wilson RG, McLean LM, Dawes PD, Shrinmankar J (2001) Aggressive local treatment for screen-detected DCIS results in very low rates of recurrence. Eur J Surg Oncol 27(5):454–458. doi:10.1053/ejso.2001.1163

    Article  PubMed  CAS  Google Scholar 

  • Jian B, Narula N, Li QY, Mohler III ER, Levy RJ (2003) Progression of aortic valve stenosis: TGF-β1 is present in calcified aortic valve cusps and promotes aortic valve interstitial cell calcification via apoptosis. Ann Thoracic Surg 75(2):457–465. doi:10.1016/S0003-4975(02)04312-6

    Article  Google Scholar 

  • Kerlikowske K, Molinaro A, Cha I, Ljung BM, Ernster VL, Stewart K, Chew K, Moore 2nd DH, Waldman F (2003) Characteristics associated with recurrence among women with ductal carcinoma in situ treated by lumpectomy. J Natl Cancer Inst 95(22):1692–1702

    PubMed  Google Scholar 

  • Kerr JF, Winterford CM, Harmon BV (1994) Apoptosis. Its significance in cancer and cancer therapy. Cancer 15(8):2013–2026

    Google Scholar 

  • Khan S, Rogers M, Khurana K, Meguid M, Numann P (1998) Estrogen receptor expression in benign breast epithelium and breast cancer risk. J Natl Cancer Inst 90:37–42

    Article  PubMed  CAS  Google Scholar 

  • Khan S, Sachdeva A, Naim S, Meguid M, Marx W, Simon H, et al (1999) The normal breast epithelium of women with breast cancer displays an aberrant response to estradiol. Cancer Epidemiol Biomarkers Prev 8:867–872

    PubMed  CAS  Google Scholar 

  • Kopans DB, Rafferty E, Georgian-Smith D, Yeh E, D’Alessandro H, Hughes K, Halpern E (2003) A simple model of breast carcinoma growth may provide explanations for observations of apparently complex phenomena. Cancer 97(12):2951–2959

    Article  PubMed  Google Scholar 

  • Krysko DV, Berghe TV, D’Herde K, Vandenabeele P (2008) Apoptosis and necrosis: Detection, discrimination and phagocytosis. Methods 44:205–221. doi:10.1016/j.ymeth.2007.12.001

    Article  PubMed  CAS  Google Scholar 

  • Lampejo OT, Barnes DM, Smith P, Millis RR (1994) Evaluation of infiltrating ductal carcinomas with a DCIS component: correlation of the histologic type of the in situ component with grade of the infiltrating component. Semin Diagn Pathol 11(3):215–222

    PubMed  CAS  Google Scholar 

  • Lee JS, Basalyga DM, Simionescu A, Isenburg JC, Sinionescu DT, Vyavahare NR (2006a) Elastin calcification in the rate subdermal model is accompanied by up-regulation of degradative and osteogenic cellular responses. Am J Pathol 168:490–498. doi:10.2353/ajpath.2006.050338

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Mohsin SK, Mao S, Hilsenbeck SG, Medina D, Allred DC (2006b) Hormones, receptors, and growth in hyperplastic enlarged lobular units: early potential precursors of breast cancer. Breast Cancer Res 8(1):R6

    Article  PubMed  CAS  Google Scholar 

  • Lustig B, Jerchow B, Sachs M, Wiler S, Pietsch T, Karsten U, van de Wetering M, Clevers H, Schlag PM, Birchmeier W, Behrens J (2002) Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol Cell Biol 22:1184–1193

    Article  PubMed  CAS  Google Scholar 

  • Macklin P, Lowengrub JS (2005) Evolving interfaces via gradients of geometry-dependent interior Poisson problems: application to tumor growth 203(1):191–220. doi:10.1016/j.jcp.2004.08.010

    Google Scholar 

  • Macklin P, Lowengrub JS (2006) An improved geometry-aware curvature discretization for level set methods: application to tumor growth J Comput Phys 215(2):392–401. doi:10.1016/ j.jcp.2005.11.016

    Google Scholar 

  • Macklin P, Lowengrub JS (2007) Nonlinear simulation of the effect of microenvironment on tumor growth. J Theor Biol 245(4):677–704. doi:10.1016/j.jtbi.2006.12.004

    Article  PubMed  CAS  Google Scholar 

  • Macklin P, Lowengrub JS (2008) A new ghost cell/level set method for moving boundary problems: application to tumor growth. J Sci Comput 35(2–3):266–299. doi:10.1007/s10915-008-9190-z

    Article  Google Scholar 

  • Macklin P, McDougall SR, Anderson ARA, Chaplain MAJ, Lowengrub J (2009) Multiscale modelling and nonlinear simulation of vascular tumour growth. J Math Biol 58(4–5):765–798. doi:10.1007/s00285-008-0216-9

    Article  PubMed  Google Scholar 

  • Macklin P, Kim J, Tomaiuolo G, Edgerton ME, Cristini V (in preparation) An agent-based cell model, with application to patient-specific ductal carcinoma in situ modeling

    Google Scholar 

  • Macknight ADC, DiBona DR, Leaf A, Mortimer MC (1971) Measurement of the composition of epithelial cells from the toad urinary bladder. J Membr Biol 6(2):108–126. doi:10.1007/ BF01873458

    Article  CAS  Google Scholar 

  • Malladi R, Sethian JA, Vemuri BC (1995) Shape modeling with front propagation: a level set approach. IEEE Trans Pattern Anal Mach Intell 17(2):158–175. doi:10.1109/34.368173

    Article  Google Scholar 

  • Malladi R, Sethian JA, Vemuri BC (1996) A fast level set based algorithm for topology-independent shape modeling. J Math Imaging Vis 6(2–3):269–289. doi:10.1007/BF00119843

    Article  Google Scholar 

  • Mannes KD, Edgerton ME, Simpson JF, Jenson RA, Page DL (2002) Pagetoid spread in ductal carcinoma in situ: characterization and computer simulation. In: United States and Canadian Academy of Pathology (USCAP) annual meeting 2002, Chicago, IL

    Google Scholar 

  • Moffat DF, Going JJ (1996) Three dimensional anatomy of complete duct systems in human breast: pathological and developmental implications. J Clin Pathol 49:48–52. doi:10.1136/jcp.49.1.48

    Article  PubMed  CAS  Google Scholar 

  • Ohtake T, Kimijima I, Fukushima T, Yasuda M, Sekikawa K, Takenoshita S, Abe R (2001) Computer-assisted complete three-dimensional reconstruction of the mammary ductal/lobular systems. Cancer 91:2263–2272

    Article  PubMed  CAS  Google Scholar 

  • Øksendal B (2007) Stochastic differential equations: an introduction with applications, 6th edn. Springer, New York

    Google Scholar 

  • Osher S, Fedkiw R (2001) Level set methods: an overview and some recent results 169(2): 463–502. doi:10.1006/jcph.2000.6636

    CAS  Google Scholar 

  • Osher S, Fedkiw R (2002) Level set methods and dynamic implicit surfaces. Springer, New York

    Google Scholar 

  • Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations 79(1):12–49. doi:10.1016/0021-9991(88)90002-2

    Google Scholar 

  • Owen MR, Byrne HM, Lewis CE (2004) Mathematical modelling of the use of macrophages as vehicles for drug delivery to hypoxic tumour sites. J Theor Biol 226(4):377–391

    Article  PubMed  CAS  Google Scholar 

  • Page DL, Dupont WD, Rogers LW, Landenberger M (1982) Intraductal carcinoma of the breast: follow-up after biopsy only. Cancer 49(4):751–758

    Article  PubMed  CAS  Google Scholar 

  • Panorchan P, Thompson MS, Davis KJ, Tseng Y, Konstantopoulos K, Wirtz D (2006) Single-molecule analysis of cadherin-mediated cell-cell adhesion. J Cell Sci 119:66–74. doi:10.1242/jcs.02719

    Article  PubMed  CAS  Google Scholar 

  • Patani N, Cutuli B, Mokbel K (2008) Current management of DCIS: a review. Breast Cancer Res Treat 111(1):1–10

    Article  PubMed  Google Scholar 

  • Rejniak KA, Dillon RH (2007) A single cell-based model of the ductal tumour architecture. Comput Math Methods Med 8(1):51–69

    Article  Google Scholar 

  • Sanders ME, Schuyler PA, Dupont WD, Page DL (2005) The natural history of low-grade ductal carcinoma in situ of the breast in women treated by biopsy only revealed over 30 years of long-term follow-up. Cancer 103(12):2481–2484

    Article  PubMed  Google Scholar 

  • Scarlett JL, Sheard PW, Hughes G, Ledgerwood EC, Ku HH, Murphy MP (2000) Changes in mitochondrial membrane potential during staurosporine-induced apoptosis in jurkat cells. IFEBS Lett 475:267–272

    Article  CAS  Google Scholar 

  • Seidensticker MJ, Behrens J (2000) Biochemical interactions in the wnt pathway. Biochim Biophys Acta 1495:168–182

    Article  PubMed  CAS  Google Scholar 

  • Sethian JA (1999) Level set methods and fast marching methods. Cambridge University Press, New York

    Google Scholar 

  • Sethian JA, Smereka P (2003) Level set methods for fluid interfaces. Ann Rev Fluid Mech 35(1):341–372. doi:10.1146/annurev.fluid.35.101101.161105

    Article  Google Scholar 

  • Shiryaev AN (1995) Probability, 2nd edn. Springer, New York

    Google Scholar 

  • Shuryak I, Sachs RK, Hlatky L, Little MP, Hahnfeldt P, Brenner D (2006) Radiation-induced leukemia at doses relevant to radiation therapy: modeling mechanisms and estimating risks. J Natl Cancer Inst 98(24):1794–1806. doi:10.1093/jnci/djj497

    Article  PubMed  Google Scholar 

  • Silver SA, Tavassoli FA (1998) Ductal carcinoma in situ with microinvasion. Breast J 4(5):344–348

    Article  Google Scholar 

  • Silverstein MJ (1997a) Predicting residual disease and local recurrence in patients with ductal carcinoma in situ. J Natl Cancer Inst 89(18):1330–1331

    Article  PubMed  CAS  Google Scholar 

  • Silverstein MJ (1997b) Recent advances: diagnosis and treatment of early breast cancer. Br Med J 314(7096):1736ff

    Google Scholar 

  • Silverstein MJ (2000) Ductal carcinoma in situ of the breast. Annu Rev Med 51:17–32. doi:10.1146/annurev.med.51.1.17

    Article  PubMed  CAS  Google Scholar 

  • Simpson PT, Reis-Filho JS, Gale T, Lakhani SR (2005) Molecular evolution of breast cancer. J Pathol 205(2):248–254. doi:10.1002/path.1691

    Article  PubMed  CAS  Google Scholar 

  • Sontag L, Axelrod DE (2005) J Theor Biol 232(2):179–189. doi:10.1016/j.jtbi.2004.08.002

    Article  PubMed  Google Scholar 

  • Stomper PC, Margolin FR (1994) Ductal carcinoma in situ: the mammographer’s perspective. Am J Roentgenol 162:585–591

    CAS  Google Scholar 

  • Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions to incompressible two-phase flow J Comput Phys 114(1):146–159. doi:10.1006/jcph.1994.1155

    Google Scholar 

  • Tannis PJ, Nieweg OE, Valdés Olmos RA, Kroon BBR (2001) Anatomy and physiology of lymphatic drainage of the breast from the perspective of sentinel node biopsy. J Am Coll Surg 192(3):399–409. doi:10.1016/S1072-7515(00)00776-6

    Article  Google Scholar 

  • Thorne BC, Bailey AM, Peirce SM (2007) Combining experiments with multi-cell agent-based modeling to study biological tissue patterning. Breif Bioinform 8(4):245–257. doi:10.1093/bib/bbm024

    Article  CAS  Google Scholar 

  • Wang R, Jinming L, Lyte K, Yashpal NK, Fellows F, Goodyer CG (2005) Role for β1 integrin and its associated α3, α5, and α6 subunits in development of the human fetal pancreas. Diabetes 54:2080–2089

    Article  PubMed  CAS  Google Scholar 

  • Ward JP, King JR (1997) Mathematical modelling of avascular-tumour growth. IMA J Math Appl Med Biol 14(1):39–69

    Article  PubMed  CAS  Google Scholar 

  • Ward JP, King JR (1999) Mathematical modelling of avascular tumour growth II: Modelling growth saturation. IMA J Math Appl Med Biol 16:171–211

    Article  PubMed  CAS  Google Scholar 

  • Wei C, Larsen M, Hoffman MP, Yamada KM (2007) Self-organization and branching morphogenesis of primary salivary epithelial cells. Tissue Eng 13(4):721–735. doi:10.1089/ten.2006.0123

    Article  PubMed  CAS  Google Scholar 

  • Wellings SR, Jensen HM, Marcum RG (1975) An atlas of subgross pathology of the human breast with special reference to possible precancerous lesions. J Natl Cancer Inst 55(2):231–273

    PubMed  CAS  Google Scholar 

  • Xu Y, Gilbert R (2009) Some inverse problems raised from a mathematical model of ductal carcinoma in situ. Math Comput Model 49(3-4):814–828. doi:10.1016/j.mcm.2008.02.014

    Article  Google Scholar 

  • Zaman MH, Kamm RD, Matsudaira P, Lauffenburger DA (2005) Computational model for cell migration in three-dimensional matrices. Biophys J 89(2):1389–1397

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Athale CA, Deisboeck TS (2007) Development of a three-dimensional multiscale agent-based tumor model: simulating gene-protein interaction profiles, cell phenotypes and multicellular patterns in brain cancer. J Theor Biol 244(1):96–107

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially funded by a generous grant from the Cullen Trust for Health Care (VC) and by the National Science Foundation (VC). We thank Yao-Li Chuang and Sandeep Sanga at the University of Texas Health Science Center-Houston for insightful discussions on tumor growth and protein signaling modeling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Macklin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Macklin, P., Kim, J., Tomaiuolo, G., Edgerton, M.E., Cristini, V. (2009). Agent-Based Modeling of Ductal Carcinoma In Situ: Application to Patient-Specific Breast Cancer Modeling. In: Pham, T. (eds) Computational Biology. Applied Bioinformatics and Biostatistics in Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0811-7_4

Download citation

Publish with us

Policies and ethics