Skip to main content

Additive Processes for Metals

  • Chapter
  • First Online:
MEMS Materials and Processes Handbook

Part of the book series: MEMS Reference Shelf ((MEMSRS,volume 1))

Abstract

Metals are vital building blocks for MEMS. Pure metals and metal alloys are employed in microsystem design to achieve a wide array of functionality. Common examples include electrical conductors, mechanical structures, magnetic elements, thermal conductors, optical reflectors, and more. In this chapter, additive processes for metals are discussed in the context of their application in MEMS. Particular attention is paid to MEMS-centric processing technologies, where thick metal layers are often required. Basic guidelines are given for material selection, and fabrication recipes are provided as a starting point for process development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 319.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Chapter 2 (specifically Section 2.3) for general information on CVD.

  2. 2.

    See Chapters 7 and 8 for more information on chemical etching.

  3. 3.

    See Chapter 9 (specifically Section 9.2.5.5) for more information regarding liftoff.

  4. 4.

    See Chapter 9 for more information on lithography.

  5. 5.

    The German acronym “LIGA” refers to a three-step process: X-ray-Lithography, Electroplating (german: Galvanik), Polymer Replication (German: Abformung). Nowadays, “LIGA” is commonly used in reference to the two-step process of lithography and electroplating (excluding the polymer replication step).

  6. 6.

    See Chapter 13 (specifically Section 13.7) for more information on CMP.

References

  1. S.A. Campbell: Fabrication Engineering at the Micro- and Nanoscale, Ch. 12 (Oxford University Press, New York, NY, 2008)

    Google Scholar 

  2. S.P. Murarka: Chapter 9. Metallization in VLSI Technology (2nd Edition), S.M. Sze (Ed.), McGraw-Hill, New York, NY, 375–421 (1988)

    Google Scholar 

  3. R.J. Gnaedinger: Some calculations of the thickness distribution of films deposited from large area sputtering sources, J. Vac. Sci. Technol. 6, 355–362 (1969)

    Article  Google Scholar 

  4. I.A. Blech, H.A. Vander Plas: Step coverage simulation and measurements in a DC planar magnetron sputtering systems, J. Appl. Phys. 54, 3489–3496 (1983)

    Article  Google Scholar 

  5. Y.H. Park, F.T. Zold, J.F. Smith: Influences of DC bias on aluminum films prepared with a high rate magnetron sputtering cathode, Thin Solid Films 129, 309–314 (1985)

    Article  Google Scholar 

  6. S. Kobayashi, M. Sakata, K. Abe, T. Kamei, O. Kasahara, H. Ohgishi, K. Nakata: High rate deposition of MoSi2 films by selective co-sputtering, Thin Solid Films 118, 129–138 (1984)

    Article  Google Scholar 

  7. D.H. Weon, J.I. Kim, S. Mohamadi: Design of high-Q 3-D integrated inductors for high frequency applications, Analog Integr. Circuits Signal Process. 50, 89–93 (2007)

    Article  Google Scholar 

  8. M. Ataka, A. Omodaka, N. Takeshima, H. Fujita: Fabrication and operation of polyimide bimorph actuators for a ciliary motion system, J. Microelectromech. Syst. 2, 146–150 (1993)

    Article  Google Scholar 

  9. M. Schlesinger, M. Paunovic: Modern Electroplating (Wiley, New York, NY, 2000)

    Google Scholar 

  10. D.R. Crow: Principles and Applications of Electrochemistry (Stanley Thornes (Publishers) Ltd., Cheltenham, 1998)

    Google Scholar 

  11. M. Paunovic, M. Schlesinger: Fundamentals of Electrochemical Deposition (Wiley, New York, NY, 1998)

    Google Scholar 

  12. D. Landolt: Electrochemical and materials science aspects of alloy deposition, Electrochim. Acta 39, 1075–1090 (1994)

    Article  Google Scholar 

  13. H. Löwe, W. Ehrfeld, J. Schiewe: Micro-Electroforming of Miniaturized Devices for Chemical Applications, In J.W. Schultze et al. (Eds.): Electrochemical Microsystem Technologies, pp. 245–268 (Taylor & Francis, New York, NY, 2002)

    Chapter  Google Scholar 

  14. T. Fritz: Charakterisierung galvanisch abgeschiedener Nickel- und Nickelwolframschichten für mikrotechnische Anwendungen, Dissertation D82 RWTH Aachen (2002)

    Google Scholar 

  15. A. Gemmler, W. Keller, H. Richter, H. Ruess: Mikrostrukturen- Prozesswissen erlaubt höchste Präzision (English: Micro devices – process models for high precision), Metalloberfläche 47, 461–468 (1993)

    Google Scholar 

  16. J.C. Puippe: Theory and Practice of Pulse Plating (American Electroplaters and Surface Finishers Society, Orlando, FL, 1986)

    Google Scholar 

  17. R.K. Sharma, A.C. Rastog, K. Jain, G. Singh: Microstructural investigations on CdTe thin films electrodeposited using high current pulses, Physica B 366, 80–88 (2005)

    Article  Google Scholar 

  18. W. Wang, F.Y. Hou, H. Wang, H.T. Guo: Fabrication and characterization of Ni–ZrO2 composite nano-coatings by pulse electrodeposition, Scr. Mater. 53, 613–618 (2005)

    Article  Google Scholar 

  19. M.V. Rastei, S. Colis, J.P. Bucher: Growth control of homogeneous pulsed electrodeposited Co thin films on n-doped Si(111) substrates, Chem. Phys. Lett. 417, 217–221 (2005)

    Article  Google Scholar 

  20. F. Lallemand, L. Ricq, E. Deschaseau, L. De Vettor, P. Bercot: Electrodeposition of cobalt-iron alloys in pulsed current from electrolytes containing organic additives, Surf. Coat. Technol. 197, 10–17 (2005)

    Article  Google Scholar 

  21. E. Becker, W. Ehrfeld, P. Hagmann, A. Maner, D. Münchmeyer: Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic molding (LIGA process), Microelectron. Eng. 35, 35–56 (1986)

    Article  Google Scholar 

  22. S. Harsch, W. Ehrfeld, A. Maner: Untersuchungen zur Hrestellung von Mikrostrukturen großer Strukturhöhe durch Galvanoformung in Nickelsulfamatelektrolyten, Reserach Centre Karlsruhe, Germany, Report No. 4455 (1988)

    Google Scholar 

  23. W. Stark, M. Saumer, B. Matthis: Nickelsulfamat-Elektrolyte für die Mikrogalvanoformung, Galvanotechnik 86, 1107–111 (1996)

    Google Scholar 

  24. M. Guttmann, J. Schulz, V. Saile: Lithographic Fabrication of Mold Inserts, In H. Baltes, O. Brand, G.K. Fedder, C. Hierold, J. Korvink, O. Tabata (Eds.): Advanced Micro and Nanosystems, Vol. 3: Microengineering of Metals and Ceramics, Ch. 8, pp. 187–219 (Wiley-VCH, Weinheim, 2005)

    Chapter  Google Scholar 

  25. T. Fritz, M. Griepentrog, W. Mokwa, U. Schnakenberg: Determination of Young’s modulus of electroplated nickel, Electrochim. Acta 48, 3029–3035 (2003)

    Article  Google Scholar 

  26. W. Bacher, K. Bade, K. Leyendecker, W. Menz, W. Stark, A. Thommes: Electrodeposition of Microstructures, In N. Masuko, T. Osaka, Y. Ito (Eds.): Electrochemical Technology, Ch. 9, pp. 159–189 (Gordon and Breach, Kodansha, 1996)

    Google Scholar 

  27. R. Ruprecht, W. Bacher: Mikrogalvanoformung für die Weltraumforschung – Herstellen von Infrarotfiltern (English: Micro-galvanoforming for space research – production of infra-red filters), Metalloberfläche 45, 531–534 (1991)

    Google Scholar 

  28. P.M. Vereecken, R.A. Binstead, H. Deligianni, P.C. Andricacos: The chemistry of additives in damascene copper plating, IBM J. Res. Dev. 49, 1–18 (2005)

    Article  Google Scholar 

  29. T. Osaka, Y. Okinaka, J. Sasano, M. Kato: Development of new electrolytic and electroless gold plating processes for electronics applications, Sci. Technol. Adv. Mater. 7, 425–437 (2006)

    Article  Google Scholar 

  30. H. Honma, K. Hagiwara: Fabrication of gold bumps using gold sulfite plating, J. Electrochem. Soc. 142, 81–87 (1995)

    Article  Google Scholar 

  31. J.J. Kelly, N. Yang, T. Headley, J. Hachmann: Experimental study of the microstructure and stress of electroplated gold for microsystem applications, J. Electrochem. Soc. 150, C445–C450 (2003)

    Article  Google Scholar 

  32. N. Dambrowsky, J. Schulz: Gold plating in microsystem technology – challenges by new applications (original: Goldgalvanik in der Mikrosystemtechnik – Herausforderungen durch neue Anwendungen), Scientific Report FZKA 7308, Forschungszentrum Karlsruhe GmbH, Karlsruhe (2007)

    Google Scholar 

  33. M.J. Liew, S. Roy, K. Scott: Development of a non-toxic electrolyte for soft gold electrodeposition: An overview of work at University of Newcastle upon Tyre, Green Chem. 5, 376–381 (2003)

    Article  Google Scholar 

  34. Y. Okinaka, M. Hoshino: Some recent topics in gold plating for electronics applications, Gold Bull. 31, 3–13 (1998)

    Article  Google Scholar 

  35. A. Maner, W. Ehrfeld, R. Schwarz: Electroforming of absorber patterns of gold on masks for X-ray lithography, Galvanotechnik 79, 1101–1106 (1988)

    Google Scholar 

  36. A. Brenner: Electrodeposition of Alloys: Principles and Practice, Volumes I and II (Academic, New York, NY, 1963)

    Google Scholar 

  37. D. Landolt, A. Marlot: Microstructure and composition of pulse-plated metals and alloys, Surf. Coat. Technol. 169–170, 8–13 (2003)

    Article  Google Scholar 

  38. P.C. Andricacos, L.T. Romankiw: Magnetically Soft Materials in Data Storage: Their Properties and Electrochemistry, In H. Gerischer, C.W. Tobias (Eds.): Advances in Electrochemical Science and Engineering, pp. 230–321 (VCH, Weinheim, 1994)

    Google Scholar 

  39. T. Budde, M. Föhse, B. Majjer, H. Lüthje, G. Bräuer, H.H. Gatzen: An investigation on technologies to fabricate magnetic microcomponents for miniaturized actuator systems, Microsyst. Technol. 10, 237–240 (2004)

    Article  Google Scholar 

  40. E.I. Cooper, C. Bonhôte, J. Heidmann, Y. Hsu, P. Kern, J.W. Lam, M. Ramasubramanian, N. Robertson, L.T. Romankiw, H. Xu: Recent developments in high-moment electroplated materials for recording heads, IBM J. Res. Dev. 49, 103–126 (2005)

    Article  Google Scholar 

  41. M. Föhse: Entwurf und Fertigung eines linearen elektromagnetischen Mikromotors nach dem Synchronprinzip, Dissertation, Universität Hannover (2005)

    Google Scholar 

  42. U. Kirsch, R. Degen: Hochpräzise und wirtschaftlich – Die Galvanoformung als hochpräzises Verfahren zur Abformung von Mikrozahnrädern, Metalloberfläche 61, 33–35 (2007)

    Google Scholar 

  43. T. Kohlmeier, V. Seidemann, S. Büttgenbach, H.H. Gatzen: An investigation on technologies to fabricate microcoils for miniaturized actuator systems, Microsyst. Technol. 10, 175–185 (2004)

    Article  Google Scholar 

  44. S. Roy, A. Connell, A. Ludwig, N. Wang, T. O’Donnell, M. Brunet, P. McCloskey, C. Ómathúna, A. Barman, R.J. Hicken: Pulse reverse plating for integrated magnetics on Si, J. Magn. Magn. Mater. 290–291, 1524–1527 (2005)

    Article  Google Scholar 

  45. Y. Sverdlow, Y. Rosenberg, Y.I. Rozenberg, R. Zmood, R. Erlich, S. Natan, Y. Shacham-Diamand: The electrodeposition of cobalt-nickel-iron high aspect ratio thick film structures for magnetic MEMS applications, Microelectron. Eng. 76, 258–265 (2004)

    Article  Google Scholar 

  46. F.E. Rasmussen, J.T. Ravnkilde, P.T. Tang, O. Hansen, S. Bouwstra: Electroplating and characterization of cobalt-nickel-iron and nickel-iron for magnetic microsystems applications, Sens. Act. A Phys. 92, 242–248 (2001)

    Article  Google Scholar 

  47. P.T. Tang: Pulse reversal plating of nickel and nickel alloys for MEMS. Proceedings SUR/FIN, Nashville, June 25–28, pp. 224–232 (2001)

    Google Scholar 

  48. J.O. Dukovic: Current Distribution and Shape Change in Electrodeposition of Thin Films for Microelectronic Fabrication, In H. Gerischer, C.W. Tobias (Eds.) Advances in Electrochemical Science and Engineering, pp. 117–157 (Verlag Chemie, Weinheim, 1994)

    Google Scholar 

  49. L.T. Romankiw, D.A. Herman, Proceedings of the Fourth International Symposium on Magnetic Materials, Processes and Devices, pp. 626–636 (The Electrochemical Society, Pennington, NJ, 1995)

    Google Scholar 

  50. A. Thommes, W. Stark, W. Bacher: Die galvanische Abscheidung von Eisen-Nickel in LIGA-Mikrostrukturen. Scientific Reports, Research Centre Karlsruhe FZKA 5586 (1995)

    Google Scholar 

  51. S. Abel: Charakterisierung von Materialien zur Fertigung elektromagnetischer Mikroaktoren in LIGA Technik. Dissertation, University of Kaiserslautern, Germany (1996)

    Google Scholar 

  52. S.D. Leith, S. Ramli, D.T. Schwartz: Characterization of NixFe1–x (0.10<x<0.95) electrodeposition from a family of sulfamate-chloride electrolytes, J. Electrochem. Soc. 146, 1421–1435 (1999)

    Article  Google Scholar 

  53. U. Kirsch: Elektrochemische Abscheidung von spannungsarmen Nickel-Eisen-Legierungschichten und ihre Eigenschaften für Bauteile der Mikrosystemtechnik, Dissertation, University of Freiburg (Klaus Bielefeld Verlag, Friedland, 2000)

    Google Scholar 

  54. D.L. Grimmet, M. Schwartz, K. Nobe: Pulsed electrodeposition of iron-nickel alloys, J. Electrochem. Soc. 134, 3414–3418 (1990)

    Article  Google Scholar 

  55. C. Müller, M. Sarret, T. Andreu: ZnMn alloys obtained using pulse, reverse and superimposed current modulations, Electrochim. Acta 48, 2397–2404 (2003)

    Article  Google Scholar 

  56. J.Y. Fei, G.D. Wilcox: Electrodeposition of Zn–Co alloys with pulse containing reverse current, Electrochim. Acta 50, 2693–2698 (2005)

    Article  Google Scholar 

  57. F. Giro, K. Bedner, C. Dhum, J.E. Hoffmann, S.P. Heussler, J. Linke, U. Kirsch, M. Moser, M. Saumer: Pulsed electrodeposition of high aspect-ratio NiFe assemblies and its influence on spatial alloy composition, Microsyst. Technol. 14, 1111–1115 (2008)

    Article  Google Scholar 

  58. A. Brenner, G.E. Riddell: Nickel plating on steel by chemical reduction, United States Bureau of Standards, J. Res. 37, 31–34 (1946)

    Google Scholar 

  59. J.G. Jin, S.K Lee, Y.H Kim: Adhesion improvement of electroless plated Ni layer by ultrasonic agitation during zincating process, Thin Solid Films 466, 272–278 (2004)

    Article  Google Scholar 

  60. F. Touyeras, J.Y. Hihn, X. Bourgoin, B. Jacques, L. Hallez, V. Branger: Effects of ultrasonic irradiation on the properties of coatings obtained by electroless plating and electro plating, Ultrasonics Sonochem. 12, 13–19 (2004)

    Article  Google Scholar 

  61. F.A. Lowenheim (Ed.): Modern Electroplating, 3rd edn, Ch. 31 (Wiley, New York, NY, 1974)

    Google Scholar 

  62. A. Brenner, G. Riddell: Deposition of nickel and cobalt by chemical reduction, United States Bureau of Standards, J. Res. 39, 385–395 (1947)

    Google Scholar 

  63. A. Brenner: Electroless plating comes of age, Metal Finish. 52, 61–68 (1954)

    Google Scholar 

  64. N. Feldstein, T.S. Lancsek: Selective electroless plating by selective deactivation, RCA Rev. 31, 439–442 (1970)

    Google Scholar 

  65. T. Berzins: Alloy and Composite Metal Plate, U.S. Patent 3,045,334 (1962)

    Google Scholar 

  66. R.M. Hoke: Chemical Plating of Metal-Boron Alloys, U.S. Patent 2,990,296 (1961)

    Google Scholar 

  67. G.O. Mallory, J.B. Hajdu (Eds.): Electroless Plating Fundamentals and Applications, American Electroplaters and Surface Finishers Society (Noyes Publications/William Andrew Publishing, LLC, New York, NY, 1990)

    Google Scholar 

  68. A. Hung, K.-M. Chen: Mechanism of hypophosphite-reduced electroless copper, J. Electrochem. Soc. 136, 72–75 (1989)

    Article  Google Scholar 

  69. P. Fintschenko, E.C. Groshart: Electroless copper plating, Metal Finish. 68, 85–87 (1970)

    Google Scholar 

  70. A.E. Cahill: Surface catalyzed reduction of copper, Proc. Am. Electroplaters’ Soc. 44, 130 (1957)

    Google Scholar 

  71. O.B. Dutkewych, Electroless Copper Plating, U.S. Patent 3,475,186 (1969)

    Google Scholar 

  72. Y. Okinaka, In G.O. Mallory, J.B. Hajdu (Eds.), Electroless Plating of Gold and Gold Alloys, Ch. 11, American Electroplaters and Surface Finishers Society (Noyer Publications/William Andrew Publishing, New York, NY, 1990)

    Google Scholar 

  73. J.F. McCormack: Autocatalytic Gold Plating Solutions, U.S. Patent 3,589,916 (1971)

    Google Scholar 

  74. S. Mehdizadeh, J.O. Dukovic, P.C. Andricacos, L.T. Romankiw: The influence of lithographic patterning on current distribution: A model for microfabrication by electrodeposition, J. Electrochem. Soc. 139, 78–91 (1992)

    Article  Google Scholar 

  75. J.K. Luo, D.P. Chu, A.J. Feewitt, S.M. Spearing, N.A. Fleck, W.I Milne: Uniformity control of Ni thin film microstructures deposited by through mask plating, J. Electrochem. Soc. 152, C36–C41 (2005)

    Article  Google Scholar 

  76. K. Leyendecker: Untersuchungen zum Stofftransport bei der Galvanoformung von LIGA-Mikrostrukturen, Dissertation, Universität Karlsruhe (1995)

    Google Scholar 

  77. U. Gengenbach, I. Sieber, U. Wallrabe: Design for LIGA and Safe Manufacturing, In O. Brand, G. Fedder, C. Hierold, J. Korvink, O. Tabata (Eds.): Advanced Micro & Nanosystems, Vol. 7: LIGA and Its Applications, pp. 143–188 (Wiley-VCH, Weinheim, 2009)

    Google Scholar 

  78. V. Saile, U. Wallrabe, O. Tabata: LIGA and Its Applications (Wiley-VCH, Weinheim, 2009)

    Google Scholar 

  79. W. Menz, J. Mohr, O. Paul: Microsystem Technology, Ch. 7: The LIGA Process, p. 289 (Wiley VCH, Weinheim, 2001)

    Google Scholar 

  80. Y.J. Kim, M.G. Allen: Surface micromachined solenoid inductors for high frequency applications, IEEE Trans. Compon. Packaging Manuf. Technol. C 21, 26–33 (1998)

    Article  Google Scholar 

  81. J.Y. Park, M.G. Allen: High Q spiral-type microinductors on silicon substrates, IEEE Trans. Magn. 135, 3544–3546 (1999)

    Article  Google Scholar 

  82. J.-B. Yoon, C.H. Han, E. Yoon, C.K. Kim: Monolithic high-Q overhang inductors fabricated on silicon and glass substrates. Technical Digest of IEEE International Electron Devices Meeting, Dec. 5–8, 1999, pp. 753–756 (1999)

    Google Scholar 

  83. B. Morgan, X. Hua, T. Iguchi, T. Tomioka, G.S. Oehrlein, R. Ghodssi: Substrate interconnect technologies for 3-D MEMS packaging, Microelectron. Eng. 81, 106–116 (2005)

    Article  Google Scholar 

  84. Y.K. Yoon, M.G. Allen: Embedded conductor technology for micromachined RF elements, J. Micromech. Microeng. 15, 1317–1326 (2005)

    Article  Google Scholar 

  85. P. Gwynne: Back to the future: Copper comes of age, IBM Res. 35, 17–21 (1997)

    Google Scholar 

  86. F. Cros, K. Kim, M.G. Allen: A single-mask process for micromachined magnetic devices. Proceedings of the Solid State Sensor and Actuator Workshop (Hilton Head Island, SC), pp. 138–141 (1997)

    Google Scholar 

  87. J.A. Thornton, D.W. Hoffman: Stress-related effect in thin films, Thin Solid Films 171, 5–31 (1989)

    Article  Google Scholar 

  88. M.K. Ghosh, K.L. Mittal (Eds.): Polyimides: Fundamentals and Applications, Ch. 20–21 (Marcel Dekker, New York, NY, 1996)

    Google Scholar 

  89. F.K. LeGoues, B.D. Silverman, P.S. Ho: The microstructure of metal-polyimide interfaces, J. Vac. Sci. Technol. A 6, 2200–2204 (1988)

    Article  Google Scholar 

  90. N. Bowden, S. Brittain, A.G. Evans, J.W. Hutchinson, G.M. Whitesides: Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer, Nature 393, 146–149 (1998)

    Article  Google Scholar 

  91. G. Jia, M.J. Madou: MEMS Fabrication, In M. Gad-el-Hak (Ed.): The MEMS Handbook, 2nd edn, Vol. 2: MEMS Design and Fabrication, pp. 3–114 (CRC Press/Taylor and Francis, Boca Raton, FL, 2006)

    Google Scholar 

  92. K.L. Mittal (Ed.): Adhesion Aspects of Thin Films, Vol. 2, p. 125 (VSP, Utrecht, 2005)

    Google Scholar 

  93. C.K. Hu, M.B. Small, F. Kaufman, D.J. Pearson, In S.S. Wong, S. Furuka (Eds.): Tungsten and Other Advanced Metals for VLSI/ULSI Applications, p. 369 (Materials Research Society, Pittsburgh, PA, 1989)

    Google Scholar 

  94. D.R. Lide (Ed.): CRC Handbook of Chemistry and Physics, 90th edn (CRC Press/Taylor and Francis, Boca Raton, FL, 2008). Internet Version available: http://www.hbcpnetbase.com/

    Google Scholar 

  95. G.T.A. Kovacs: Micromachined Transducers Sourcebook, p. 561 (McGraw Hill, Boston, MA, 2006).

    Google Scholar 

  96. J.R. Davis (Ed.): Base-Metal Selection, In Metals Handbook Desk Edition, 2nd edn (ASM International, Materials Park, OH, 1998)

    Google Scholar 

  97. S.K. Prasad: Advanced Wirebond Interconnection Technology (Kluwer, Bangalore, 2004)

    Google Scholar 

  98. G.G. Harman: Wire Bonding in Microelectronics, 2nd edn (McGraw Hill, New York, NY, 1997)

    Google Scholar 

  99. S.D. Cramer, B.S. Covino (Eds.): ASM Handbook, Vol. 13B: Corrosion: Materials (ASM International, 2005)

    Google Scholar 

  100. D. Jiles: Introduction to Magnetism and Magnetic Materials, 2nd edn, Ch. 2, 4 (CRC Press/Taylor and Francis, Boca Raton, FL, 1998)

    Google Scholar 

  101. T.W. Swaddle: Inorganic Chemistry: An Industrial and Environmental Perspective, p. 104 (Academic, San Diego, CA, 1997)

    Google Scholar 

  102. T. Yi, C.J. Kim: Measurement of mechanical properties of MEMS materials, Measurement Sci. Technol. 10, 706–717 (1999)

    Article  Google Scholar 

  103. W.N. Sharpe: Mechanical Properties of MEMS Materials, In M. Gad-el-Hak (Ed.): The MEMS Handbook, 2nd edn, Vol. 1: MEMS Introduction and Fundamentals, Ch. 3 (CRC Press/Taylor & Francis, Boca Raton, FL, 2006)

    Google Scholar 

  104. V.T. Srikar, S.M. Spearing: A critical review of microscale mechanical testing methods used in the design of microelectromechanical systems, Exp. Mech. 43, 238–247 (2006)

    Article  Google Scholar 

  105. M. Winter: WebElements: the periodic table on the web (2009). Available at http://www.webelements.com/ (Accessed July 1, 2010)

  106. D.P. Arnold, N. Wang: Permanent magnets for MEMS. J. Microelectromech. Syst. 18, 1255–1266 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. Arnold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Arnold, D.P., Saumer, M., Yoon, YK. (2011). Additive Processes for Metals. In: Ghodssi, R., Lin, P. (eds) MEMS Materials and Processes Handbook. MEMS Reference Shelf, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-47318-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-47318-5_3

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-47316-1

  • Online ISBN: 978-0-387-47318-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics