Skip to main content

Assembly and Disassembly of Phycobilisomes

  • Chapter
  • First Online:
Complex Intracellular Structures in Prokaryotes

Part of the book series: Microbiology Monographs ((MICROMONO,volume 2))

Abstract

The process of photosynthesis is initiated by the absorption of light energy by large arrays of pigmentsbound in an ordered fashion within protein complexes called antennas. These antennas transfer the absorbedenergy at almost 100% efficiency to the reaction centers that perform the photochemical electron transferreactions required for the conversion of the light energy into useful and storable chemical energy. Inprokaryotic cyanobacteria, eukaryotic red algae and cyanelles, the major antenna complex is called the phycobilisome,an extremely large (3–7 MDa) multi subunit complex found on the stromal side of the thylakoidmembrane. Phycobilisomes are assembled in an ordered sequence from similarly structured units that covalentlybind a variety of linear tetrapyrolle pigments called bilins. Phycobilisomes have a broad cross-sectionof absorption (500–680 nm) and mainly transfer the absorbed energy to photosystem II. Theycan, however, function as an antenna of photosystem I, and their composition can be altered as a resultof changes in the environmental light quality. The phycobilisome is structurally and functionally differentfrom other classes of photosynthetic antenna complexes. In this review, we will describe the importantstructural and functional characteristics of the phycobilisome complex and its components, especially withrespect to its assembly and disassembly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

APC:

allophycocyanin

CCA:

complementary chromatic adaptation

LHC:

light harvesting complex

PB(s):

phycobilin(s)

PBS(s):

phycobilisome(s)

PBP(s):

phycobiliprotein(s)

PC:

phycocyanin

PCB:

phycocyanobilin

PE:

phycoerythrin

PEB:

phycoerythrobilin

PUB:

phycourobilin

PXB:

phycoviobilin

PSI:

photosystem I

PSII:

photosystem II

RC(s):

reaction center(s)

TEM:

transmission electron microscopy

References

  1. Adir N (2005) Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant. Photosynth Res 85:15–32

    Article  PubMed  CAS  Google Scholar 

  2. Adir N, Dobrovetsky Y, Lerner N (2001) Structure of C-phycocyanin from the thermophilic cyanobacterium Synechococcus vulcanus at 2.5 Å: Structural implications for thermal stability in phycobilisome assembly. J Mol Biol 313:71–81

    Article  PubMed  CAS  Google Scholar 

  3. Adir N, Lerner N (2003) The crystal structure of a novel unmethylated form of C-phycocyanin, a possible connector between cores and rods in pycobilisomes. J Biol Chem 278:25926–25932

    Article  PubMed  CAS  Google Scholar 

  4. Adir N, Vainer R, Lerner N (2002) Refined structure of C-phycocyanin from the cyanobacterium Synechococcus vulcanus at 1.6 Å: insights into the role of solvent molecules in thermal stability and co-factor structure. Biochim Biophys Acta 1556:168–174

    Article  PubMed  CAS  Google Scholar 

  5. Adir N, Zer H, Shochat S, Ohad I (2003) Photoinhibition—a historical perspective. Photosynth Research 76:343–370

    Article  CAS  Google Scholar 

  6. Allen MM, Smith AJ (1969) Nitrogen chlorosis in blue-green algae. Arch Mikrobiol 69:114–120

    Article  PubMed  CAS  Google Scholar 

  7. Anderson LK, Toole CM (1998) A model for early events in the assembly pathway of cyanobacterial phycobilisomes. Mol Microbiol 30:467–474

    Article  PubMed  CAS  Google Scholar 

  8. Apt KE, Collier JL, Grossman AR (1995) Evolution of the phycobiliproteins. J Mol Biol 248:79–96

    Article  PubMed  CAS  Google Scholar 

  9. Arciero DM, Bryant DA, Glazer AN (1988) In vitro attachment of bilins to apophycocyanin. I. Specific covalent adduct formation at cysteinyl residues involved in phycocyanobilin binding in C-phycocyanin. J Biol Chem 263:18343–18349

    PubMed  CAS  Google Scholar 

  10. Awramik SM (1992) The oldest records of photosynthesis. Photosynth Res 33:75–89

    Article  PubMed  CAS  Google Scholar 

  11. Barber J, Morris EP, da Fonseca PC (2003) Interaction of the allophycocyanin core complex with photosystem II. Photochem Photobiol Sci 2:536–541

    Article  PubMed  CAS  Google Scholar 

  12. Ben-Shem A, Frolow F, Nelson N (2003) Crystal structure of plant photosystem I. Nature 426:630–635

    Article  PubMed  CAS  Google Scholar 

  13. Blankenship RE, Hartman H (1998) The origin and evolution of oxygenic photosynthesis. Trends Biochem Sci 23:94–97

    Article  PubMed  CAS  Google Scholar 

  14. Blankenship RE, Olson JM, Miller M (1995) Antenna complexes from green photosynthetic bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic Photosynthetic Bacteria. Kluwer Academic Publishers, Dordrect, The Netherlands, p 399–435

    Google Scholar 

  15. Brejc K, Ficner R, Huber R, Steinbacher S (1995) Isolation, crystallization, crystal structure analysis and refinement of allophycocyanin from the cyanobacterium Spirulina platensis at 2.3 Åresolution. J Mol Biol 249:424–440

    Article  PubMed  CAS  Google Scholar 

  16. Brown SB, Houghton JD, Vernon DI (1990) Biosynthesis of phycobilins. Formation of the chromophore of phytochrome, phycocyanin and phycoerythrin. J Photochem Photobiol B 5:3–23

    Article  PubMed  CAS  Google Scholar 

  17. Bryant DA, Guglielmi G, Tandeau de Marsac N, Castets AM, Cohen-Bazire G (1979) The structure of cyanobacterial phycobilisomes: A model. Arch Microbiol 123:113–127

    Article  CAS  Google Scholar 

  18. Buick R (1992) The antiquity of oxygenic photosynthesis: evidence from stromatolites in sulphate-deficient Archaean lakes. Science 255:74–77

    Article  PubMed  CAS  Google Scholar 

  19. Cai YA, Murphy JT, Wedemayer GJ, Glazer AN (2001) Recombinant phycobiliproteins. Recombinant C-phycocyanins equipped with affinity tags, oligomerization, and biospecific recognition domains. Anal Biochem 290:186–204

    Article  PubMed  CAS  Google Scholar 

  20. Chang WR, Jiang T, Wan ZL, Zhang JP, Yang ZX, Liang DC (1996) Crystal structure of R-phycoerythrin from Polysiphonia urceolata at 2.8 Åresolution. J Mol Biol 262:721–731

    Article  PubMed  CAS  Google Scholar 

  21. Cogdell RJ, Gardiner AT, Roszak AW, Law CJ, Southall J, Isaacs NW (2004) Rings, ellipses and horseshoes: how purple bacteria harvest solar energy. Photosynth Res 81:207–214

    Article  PubMed  CAS  Google Scholar 

  22. Collier JL, Grossman AR (1994) A small polypeptide triggers complete degradation of light-harvesting phycobiliproteins in nutrient-deprived cyanobacteria. EMBO J 13:1039–1047

    PubMed  CAS  Google Scholar 

  23. De Marais DJ (2000) Evolution. When did photosynthesis emerge on Earth? Science 289:1703–1705

    PubMed  Google Scholar 

  24. Debreczeny MP, Sauer K, Zhou J, Bryant DA (1993) Monomeric C-phycocyanin at room temperature and 77K: Resolution of the absorption and fluorescence spectra of the individual chromophores and the energy-transfer rate constants. J Phys Chem 97:9852–9862

    Article  CAS  Google Scholar 

  25. Dekker JP, Boekema EJ (2005) Supramolecular organization of thylakoid membrane proteins in green plants. Biochim Biophys Acta 1706:12–39

    Article  PubMed  CAS  Google Scholar 

  26. Dolganov N, Grossman AR (1999) A polypeptide with similarity to phycocyanin alpha-subunit phycocyanobilin lyase involved in degradation of phycobilisomes. J Bacteriol 181:610–617

    PubMed  CAS  Google Scholar 

  27. Doust AB, Marai CN, Harrop SJ, Wilk KE, Curmi PM, Scholes GD (2004) Developing a structure-function model for the cryptophyte phycoerythrin 545 using ultrahigh resolution crystallography and ultrafast laser spectroscopy. J Mol Biol 344:135–153

    Article  PubMed  CAS  Google Scholar 

  28. Ducret A, Muller SA, Goldie KN, Hefti A, Sidler WA, Zuber H, Engel A (1998) Reconstitution, characterization and mass analysis of the pentacylindrical allophycocyanin core complex from the cyanobacterium Anabaena sp. PCC 7120. J Mol Biol 278:369–388

    Article  PubMed  CAS  Google Scholar 

  29. Duerring M, Huber R, Bode W (1988) The structure of gamma-N-methylasparagine in C-phycocyanin from Mastigocladus laminosus and Agmenellum quadriplicatum. FEBS Lett 236:167–170

    Article  CAS  Google Scholar 

  30. Duerring M, Schmidt GB, Huber R (1991) Isolation, crystallization, crystal structure analysis and refinement of constitutive C-phycocyanin from the chromatically adapting cyanobacterium Fremyella diplosiphon at 1.66 Åresolution. J Mol Biol 217:577–592

    Article  PubMed  CAS  Google Scholar 

  31. Fairchild CD, Jones IK, Glazer AN (1991) Absence of glycosylation on cyanobacterial phycobilisome linker polypeptides and rhodophytan phycoerythrins. J Bacteriol 173:2985–2992

    PubMed  CAS  Google Scholar 

  32. Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838

    Article  PubMed  CAS  Google Scholar 

  33. Forster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Physik 2:55–75

    Article  CAS  Google Scholar 

  34. Forster T (1965) Delocalized excitation and excitation transfer. In: Sinanoglu O (ed) Modern Quantum Chemistry. Academic Press, New York, p 93–137

    Google Scholar 

  35. Frankenberg N, Mukougawa K, Kohchi T, Lagarias JC (2001) Functional genomic analysis of the HY2 family of ferredoxin-dependent bilin reductases from oxygenic photosynthetic organisms. Plant Cell 13:965–978

    PubMed  CAS  Google Scholar 

  36. Frigaard NU, Chew AG, Li H, Maresca JA, Bryant DA (2003) Chlorobium tepidum: insights into the structure, physiology, and metabolism of a green sulfur bacterium derived from the complete genome sequence. Photosynth Res 78:93–117

    Article  PubMed  CAS  Google Scholar 

  37. Frigaard N-U, Vassilieva EV, Li H, Milks KJ, Zhao J, Bryant DA (eds) (2001) The Remarkable Chlorosome. CSIRO Publishing, Melbourne, Australia

    Google Scholar 

  38. Fuglistaller P, Mimuro M, Suter F, Zuber H (1987) Allophycocyanin complexes of the phycobilisome from Mastigocladus laminosus. Influence of the linker polypeptide L8.9C on the spectral properties of the phycobiliprotein subunits. Biol Chem Hoppe Seyler 368:353–367

    Article  PubMed  CAS  Google Scholar 

  39. Gantt E, Conti SF (1966a) Granules associated with the chloroplast lamellae of Porphyridium cruentum. J Cell Biol 29:423–434

    Article  PubMed  CAS  Google Scholar 

  40. Gantt E, Conti SF (1966b) Phycobiliprotein localization in algae. Brookhaven Symp Biol 19:393–405

    PubMed  CAS  Google Scholar 

  41. Gantt E, Lipschultz CA (1972) Phycobilisomes of Porphyridium cruentum. I. Isolation. J Cell Biol 54:313–324

    Article  PubMed  CAS  Google Scholar 

  42. Glauser M, Bryant DA, Frank G, Wehrli E, Rusconi SS, Sidler W, Zuber H (1992) Phycobilisome structure in the cyanobacteria Mastigocladus laminosus and Anabaena sp. PCC 7120. Eur J Biochem 205:907–915

    Article  PubMed  CAS  Google Scholar 

  43. Glazer AN (1985) Light harvesting by phycobilisomes. Annu Rev Biophys Biophys Chem 14:47–77

    Article  PubMed  CAS  Google Scholar 

  44. Glazer AN (1989) Light guides. Directional energy transfer in a photosynthetic antenna. J Biol Chem 264:1–4

    PubMed  CAS  Google Scholar 

  45. Glazer AN, Bryant DA (1975) Allophycocyanin B (λmax 671, 618 nm): a new cyanobacterial phycobiliprotein. Arch Microbiol 104:15–22

    Article  PubMed  CAS  Google Scholar 

  46. Gomez-Lojero C, Perez-Gomez B, Shen G, Schluchter WM, Bryant DA (2003) Interaction of ferredoxin:NADP+ oxidoreductase with phycobilisomes and phycobilisome substructures of the cyanobacterium Synechococcus sp. strain PCC 7002. Biochemistry 42:13800–13811

    Article  PubMed  CAS  Google Scholar 

  47. Grossman AR, Bhaya D, He Q (2001) Tracking the light environment by cyanobacteria and the dynamic nature of light harvesting. J Biol Chem 276:11449–11452

    Article  PubMed  CAS  Google Scholar 

  48. Grossman AR, Schaefer MR, Chiang GG, Collier JL (1993) The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol Rev 57:725–749

    PubMed  CAS  Google Scholar 

  49. Holm L, Sander C (1993) Structural alignment of globins, phycocyanins and colicin A. FEBS Lett 315:301–306

    Article  PubMed  CAS  Google Scholar 

  50. Huang L, McCluskey MP, Ni H, LaRossa RA (2002) Global gene expression profiles of the cyanobacterium Synechocystis sp. strain PCC 6803 in response to irradiation with UV-B and white light. J Bacteriol 184:6845–6858

    Article  PubMed  CAS  Google Scholar 

  51. Huber R (1989) Nobel lecture. A structural basis of light energy and electron transfer in biology. Embo J 8:2125–2147

    PubMed  CAS  Google Scholar 

  52. Klotz AV, Leary JA, Glazer AN (1986) Post-translational methylation of asparaginyl residues. Identification of beta-71 γ-N-methylasparagine in allophycocyanin. J Biol Chem 261:15891–15894

    PubMed  CAS  Google Scholar 

  53. Kondo K, Geng XX, Katayama M, Ikeuchi M (2005) Distinct roles of CpcG1, CpcG2 in phycobilisome assembly in the cyanobacterium Synechocystis sp. PCC 6803. Photosynth Res 84:269–273

    Article  PubMed  CAS  Google Scholar 

  54. Liu JY, Jiang T, Zhang JP, Liang DC (1999) Crystal structure of allophycocyanin from red algae Porphyra yezoensis at 2.2 Åresolution. J Biol Chem 274:16945–16952

    Article  PubMed  CAS  Google Scholar 

  55. Liu LN, Chen XL, Zhang YZ, Zhou BC (2005) Characterization, structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red algae: an overview. Biochim Biophys Acta 1708:133–142

    Article  PubMed  CAS  Google Scholar 

  56. Loll B, Kern J, Zouni A, Saenger W, Biesiadka J, Irrgang KD (2005) The Antenna System of Photosystem II From Thermosynechococcus elongatus at 3.2 AngstromResolution. Photosynth Res 86:175–184

    Article  PubMed  CAS  Google Scholar 

  57. Lundell DJ, Glazer AN (1983) Molecular architecture of a light-harvesting antenna. Structure of the 18 S core-rod subassembly of the Synechococcus 6301 phycobilisome. J Biol Chem 258:894–901

    PubMed  CAS  Google Scholar 

  58. Luque I, Ochoa De Alda JA, Richaud C, Zabulon G, Thomas JC, Houmard J (2003) The NblAI protein from the filamentous cyanobacterium Tolypothrix PCC 7601: regulation of its expression and interactions with phycobilisome components. Mol Microbiol 50:1043–1054

    Article  PubMed  CAS  Google Scholar 

  59. MacColl R (1998) Cyanobacterial phycobilisomes. J Struct Biol 124:311–334

    Article  PubMed  CAS  Google Scholar 

  60. MacColl R (2004) Allophycocyanin and energy transfer. Biochim Biophys Acta 1657:73–81

    Article  PubMed  CAS  Google Scholar 

  61. MacColl R, Eisele LE, Menikh A (2003) Allophycocyanin: trimers, monomers, subunits, and homodimers. Biopolymers 72:352–365

    Article  PubMed  CAS  Google Scholar 

  62. MacDonald TM, Dubois L, Smith LC, Campbell DA (2003) Sensitivity of cyanobacterial antenna, reaction center, CO2 assimilation transcripts and proteins to moderate UVB: light acclimation potentiates resistance to UVB. Photochem Photobiol 77:405–412

    Article  PubMed  CAS  Google Scholar 

  63. Melkozernov AN, Blankenship RE (2005) Structural and functional organization of the peripheral light-harvesting system in Photosystem I. Photosynth Res 85:33–50

    Article  PubMed  CAS  Google Scholar 

  64. Migita CT, Zhang X, Yoshida T (2003) Expression and characterization of cyanobacterium heme oxygenase, a key enzyme in the phycobilin synthesis. Properties of the heme complex of recombinant active enzyme. Eur J Biochem 270:687–698

    Article  PubMed  CAS  Google Scholar 

  65. Mimuro M, Kikuchi H, Murakami A (1999) Structure, function of Phycobiliosmes. In: Singhal GS, Renger G, Sopory SK, Irrgang KD, Govindjee (eds) Concepts in Photobiology. Kluwer Academic Publishers, Dordrecht, p 104–135

    Chapter  Google Scholar 

  66. Montgomery BL, Casey ES, Grossman AR, Kehoe DM (2004) Apl A, a member of a new class of phycobiliproteins lacking a traditional role in photosynthetic light harvesting. J Bacteriol 186:7420–7428

    Article  PubMed  CAS  Google Scholar 

  67. Nield J, Rizkallah PJ, Barber J, Chayen NE (2003) The 1.45 Åthree-dimensional structure of C-phycocyanin from the thermophilic cyanobacterium Synechococcus elongatus. J Struct Biol 141:149–155

    Article  PubMed  CAS  Google Scholar 

  68. Padyana AK, Bhat VB, Madyastha KM, Rajashankar KR, Ramakumar S (2001) Crystal structure of a light-harvesting protein C-phycocyanin from Spirulina platensis. Biochem Biophys Res Commun 282:893–898

    Article  PubMed  CAS  Google Scholar 

  69. Piven I, Ajlani G, Sokolenko A (2005) Phycobilisome linker proteins are phosphorylated in Synechocystis sp. PCC 6803. J Biol Chem 280:21667–21672

    Article  PubMed  CAS  Google Scholar 

  70. Pizarro SA, Sauer K (2001) Spectroscopic study of the light-harvesting protein C-phycocyanin associated with colorless linker peptides. Photochem Photobiol 73:556–563

    Article  PubMed  CAS  Google Scholar 

  71. Reuter W, Wiegand G, Huber R, Than ME (1999) Structural analysis at 2.2 Åof orthorhombic crystals presents the asymmetry of the allophycocyanin-linker complex, AP.LC7.8, from phycobilisomes of Mastigocladus laminosus. Proc Natl Acad Sci USA 96:1363–1368

    Article  PubMed  CAS  Google Scholar 

  72. Richaud C, Zabulon G, Joder A, Thomas JC (2001) Nitrogen or sulfur starvation differentially affects phycobilisome degradation and expression of the nblA gene in Synechocystis strain PCC 6803. J Bacteriol 183:2989–2994

    Article  PubMed  CAS  Google Scholar 

  73. Sauer K, Scheer H (1988) Exitation transfer in C-phycocyanin. Forster transfer rate and exciton calculations based on new crystal structure data for C-phycocyanins from Agmenellum quadruplaticumand Mastigocladus laminosus. Biochim Biophys Acta 936:157–170

    Article  CAS  Google Scholar 

  74. Schirmer T, Bode W, Huber R, Sidler W, Zuber H (1985) X-ray crystallographic structure of the light-harvesting biliprotein C-phycocyanin from the thermophilic cyanobacterium Mastigocladus laminosus and its resemblance to globin structures. J Mol Biol 184:257–277

    Article  PubMed  CAS  Google Scholar 

  75. Schirmer T, Huber R, Schneider M, Bode W, Miller M, Hackert ML (1986) Crystal structure analysis and refinement at 2.5 Åof hexameric C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum. The molecular model and its implications for light-harvesting. J Mol Biol 188:651–676

    Article  PubMed  CAS  Google Scholar 

  76. Schwarz R, Grossman AR (1998) A response regulator of cyanobacteria integrates diverse environmental signals and is critical for survival under extreme conditions. Proc Natl Acad Sci USA 95:11008–11013

    Article  PubMed  CAS  Google Scholar 

  77. Sendersky E, Lahmi R, Shaltiel J, Perelman A, Schwarz R (2005) Nbl C, a novel component required for pigment degradation during starvation in Synechococcus PCC 7942. Mol Microbiol 58:659–668

    Article  PubMed  CAS  Google Scholar 

  78. Sidler WA (1994) Phycobilisome and phycobiliprotein structures. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria. Kluwer Academic Publishers, Dordrect, p 139–216

    Chapter  Google Scholar 

  79. Stec B, Troxler RF, Teeter MM (1999) Crystal structure of C-phycocyanin from Cyanidium caldarium provides a new perspective on phycobilisome assembly. Biophys J 76:2912–2921

    Article  PubMed  CAS  Google Scholar 

  80. Steglich C, Frankenberg-Dinkel N, Penno S, Hess WR (2005) A green light-absorbing phycoerythrin is present in the high-light-adapted marine cyanobacterium Prochlorococcus sp. MED4. Environ Microbiol 7:1611–1618

    Article  PubMed  CAS  Google Scholar 

  81. Sugishima M, Hagiwara Y, Zhang X, Yoshida T, Migita CT, Fukuyama K (2005) Crystal structure of dimeric heme oxygenase-2 from Synechocystis sp. PCC 6803 in complex with heme. Biochemistry 44:4257–4266

    Article  PubMed  CAS  Google Scholar 

  82. Sun L, Wang S (2003) Allophycocyanin complexes from the phycobilisome of a thermophilic blue-green alga Myxosarcina concinna Printz. J Photochem Photobiol B 72:45–53

    Article  PubMed  CAS  Google Scholar 

  83. Swanson RV, Glazer AN (1990) Phycobiliprotein methylation. Effect of the γ-N-methylasparagine residue on energy transfer in phycocyanin and the phycobilisome. J Mol Biol 214:787–796

    Article  PubMed  CAS  Google Scholar 

  84. Tandeau de Marsac N, Cohen-Bazire G (1977) Molecular composition of cyanobacterial phycobilisomes. Proc Natl Acad Sci USA 74:1635–1639

    Article  Google Scholar 

  85. Teale FW, Dale RE (1970) Isolation and spectral characterization of phycobiliproteins. Biochem J 116:161–169

    PubMed  CAS  Google Scholar 

  86. Ting CS, Rocap G, King J, Chisholm SW (2002) Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. Trends Microbiol 10:134–142

    Article  PubMed  CAS  Google Scholar 

  87. van Waasbergen LG, Dolganov N, Grossman AR (2002) nblS, a gene involved in controlling photosynthesis-related gene expression during high light and nutrient stress in Synechococcus elongatus PCC 7942. J Bacteriol 184:2481–2490

    Article  PubMed  Google Scholar 

  88. Wilk KE, Harrop SJ, Jankova L, Edler D, Keenan G, Sharples F, Hiller RG, Curmi PM (1999) Evolution of a light-harvesting protein by addition of new subunits and rearrangement of conserved elements: crystal structure of a cryptophyte phycoerythrin at 1.63 Åresolution. Proc Natl Acad Sci USA 96:8901–8906

    Article  PubMed  CAS  Google Scholar 

  89. Xiong J, Bauer CE (2002) Complex evolution of photosynthesis. Annu Rev Plant Biol 53:503–521

    Article  PubMed  CAS  Google Scholar 

  90. Yamanaka G, Glazer AN, Williams RC (1978) Cyanobacterial phycobilisomes. Characterization of the phycobilisomes of Synechococcus sp. 6301. J Biol Chem 253:8303–8310

    PubMed  CAS  Google Scholar 

  91. Yi ZW, Huang H, Kuang TY, Sui SF (2005) Three-dimensional architecture of phycobilisomes from Nostoc flagelliforme revealed by single particle electron microscopy. FEBS Lett 579:3569–3573

    Article  PubMed  CAS  Google Scholar 

  92. Yonath A (2005) Antibiotics targeting ribosomes: resistance, selectivity, synergism and cellular regulation. Annu Rev Biochem 74:649–679

    Article  PubMed  CAS  Google Scholar 

  93. Yu MH, Glazer AN (1982) Cyanobacterial phycobilisomes. Role of the linker polypeptides in the assembly of phycocyanin. J Biol Chem 257:3429–3433

    PubMed  CAS  Google Scholar 

  94. Yu MH, Glazer AN, Williams RC (1981) Cyanobacterial phycobilisomes. Phycocyanin assembly in the rod substructures of anabaena variabilis phycobilisomes. J Biol Chem 256:13130–13136

    PubMed  CAS  Google Scholar 

  95. Zhao KH, Su P, Bohm S, Song B, Zhou M, Bubenzer C, Scheer H (2005) Reconstitution of phycobilisome core-membrane linker, LCM, by autocatalytic chromophore binding to ApcE. Biochim Biophys Acta 1706:81–87

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Israel Science Foundation founded by the Israel Academy of Sciences and Humanities (438/02) and the Technion Fund for the Promotion of Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noam Adir .

Editor information

Jessup M. Shively

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Adir, N., Dines, M., Klartag, M., McGregor, A., Melamed-Frank, M. (2006). Assembly and Disassembly of Phycobilisomes. In: Shively, J.M. (eds) Complex Intracellular Structures in Prokaryotes. Microbiology Monographs, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7171_020

Download citation

Publish with us

Policies and ethics