Skip to main content

Contrasting Views on the Role of Mesenchymal Stromal/Stem Cells in Tumour Growth: A Systematic Review of Experimental Design

  • Conference paper
  • First Online:
Stem Cells: Biology and Engineering

Abstract

The effect of mesenchymal stromal/stem cells (MSCs) on tumour growth remains controversial. Experimental evidence supports both an inhibitory and a stimulatory effect. We have assessed factors responsible for the contrasting effects of MSCs on tumour growth by doing a meta-analysis of existing literature between 2000 and May 2017. We assessed 183 original research articles comprising 338 experiments. We considered (a) in vivo and in vitro experiments, (b) whether in vivo studies were syngeneic or xenogeneic, and (c) if animals were immune competent or deficient. Furthermore, the sources and types of cancer cells and MSCs were considered together with modes of cancer induction and MSC administration. 56% of all 338 experiments reported that MSCs promote tumour growth. 78% and 79% of all experiments sourced human MSCs and cancer cells, respectively. MSCs were used in their naïve and engineered form in 86% and 14% of experiments, respectively, the latter to produce factors that could alter either their activity or that of the tumour. 53% of all experiments were conducted in vitro with 60% exposing cancer cells to MSCs via coculture. Of all in vivo experiments, 79% were xenogeneic and 63% were conducted in immune-competent animals. Tumour growth was inhibited in 80% of experiments that used umbilical cord-derived MSCs, whereas tumour growth was promoted in 64% and 57% of experiments that used bone marrow- and adipose tissue-derived MSCs, respectively. This contrasting effect of MSCs on tumour growth observed under different experimental conditions may reflect differences in experimental design. This analysis calls for careful consideration of experimental design given the large number of MSC clinical trials currently underway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AD:

Adipose tissue

BM:

Bone marrow

CC:

Coculture

CCR2:

C-C motif chemokine receptor 2

c-Kit:

Tyrosine-protein kinase Kit also known as mast/stem cell growth factor receptor (SCFR)

CM:

Conditioned medium

c-Met:

Tyrosine-protein kinase Met or hepatocyte growth factor receptor

CXCR4:

C-X-C motif chemokine receptor 4

EGF:

Epithelial growth factor

HGF:

Hepatocyte growth factor

HNSCC:

Head and neck squamous cell carcinoma

IL-1β:

Interleukin 1-beta

IL-8:

Interleukin 8

IP:

Intraperitoneal

IV:

Intravenous

MCP-1:

Monocyte chemotactic protein 1

MSC:

Mesenchymal stromal/stem cell

PDGF:

Platelet-derived growth factor

SC:

Subcutaneous

SCF:

Stem cell factor

SCID:

Severe combined immunodeficiency

SDF-1:

Stromal cell-derived factor 1

TGF-ß:

Transforming growth factor-beta

TNF-α:

Tumour necrosis factor alpha

UC:

Umbilical cord

VEGF:

Vascular endothelial growth factor

VEGFR:

Vascular endothelial growth factor receptor

References

  • Abrate, A., Buono, R., Canu, T., Esposito, A., Del Maschio, A., Lucianò, R., Bettiga, A., Colciago, G., Guazzoni, G., Benigni, F., Hedlund, P., Altaner, C., Montorsi, F., & Cavarretta, I. T. R. (2014). Mesenchymal stem cells expressing therapeutic genes induce autochthonous prostate tumour regression. European Journal of Cancer, 50, 2478–2488.

    Article  CAS  PubMed  Google Scholar 

  • Ahn, J. O., Chae, J. S., Coh, Y. R., Jung, W. S., Lee, H. W., Shin, I. S., Kang, S. K., & Youn, H. Y. (2014). Human adipose tissue-derived mesenchymal stem cells inhibit T-cell lymphoma growth in vitro and in vivo. Anticancer Research, 34, 4839–4847.

    CAS  PubMed  Google Scholar 

  • Albarenque, S. M., Zwacka, R. M., & Mohr, A. (2011). Both human and mouse mesenchymal stem cells promote breast cancer metastasis. Stem Cell Research, 7, 163–171.

    Article  CAS  PubMed  Google Scholar 

  • Bianco, P., Cao, X., Frenette, P. S., Mao, J. J., Robey, P. G., Simmons, P. J., & Wang, C.-Y. (2013). The meaning, the sense and the significance: Translating the science of mesenchymal stem cells into medicine. Nature Medicine, 19, 35–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bock, B. C., Stein, U., Schmitt, C. A., & Augustin, H. G. (2014). Mouse models of human cancer. Cancer Research, 74, 4671–4675.

    Article  CAS  PubMed  Google Scholar 

  • Bonuccelli, G., Avnet, S., Grisendi, G., Salerno, M., Granchi, D., Dominici, M., Kusuzaki, K., & Baldini, N. (2014). Role of mesenchymal stem cells in osteosarcoma and metabolic reprogramming of tumor cells. Oncotarget, 5, 7575–7588.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chao, K. C., Yang, H. T., & Chen, M. W. (2012). Human umbilical cord mesenchymal stem cells suppress breast cancer tumourigenesis through direct cell-cell contact and internalization. Journal of Cellular and Molecular Medicine, 16, 1803–1815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Z., He, X., He, X., Chen, X., Lin, X., Zou, Y., Wu, X., & Lan, P. (2014a). Bone marrow mesenchymal stem cells ameliorate colitis-associated tumorigenesis in mice. Biochemical and Biophysical Research Communications, 450, 1402–1408.

    Article  CAS  PubMed  Google Scholar 

  • Chen, D.-R., Lu, D.-Y., Lin, H.-Y., & Yeh, W.-L. (2014b). Mesenchymal stem cell-induced doxorubicin resistance in triple negative breast cancer. BioMed Research International, 2014, 10.

    Google Scholar 

  • Ciavarella, S., Caselli, A., Tamma, A. V., Savonarola, A., Loverro, G., Paganelli, R., Tucci, M., & Silvestris, F. (2015). A peculiar molecular profile of umbilical cord-mesenchymal stromal cells drives their inhibitory effects on multiple myeloma cell growth and tumor progression. Stem Cells and Development, 24, 1457–1470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke, M. R., Imhoff, F. M., & Baird, S. K. (2015). Mesenchymal stem cells inhibit breast cancer cell migration and invasion through secretion of tissue inhibitor of metalloproteinase-1 and -2. Molecular Carcinogenesis, 54, 1214–1219.

    Article  CAS  PubMed  Google Scholar 

  • Cuiffo, B. G., Campagne, A., Bell, G. W., Lembo, A., Orso, F., Lien, E. C., Bhasin, M. K., Raimo, M., Hanson, S. E., Marusyk, A., El-Ashry, D., Hematti, P., Polyak, K., Mechta-Grigoriou, F., Mariani, O., Volinia, S., Vincent-Salomon, A., Taverna, D., & Karnoub, A. E. (2014). MSC-regulated microRNAs converge on the transcription factor FOXP2 and promote breast cancer metastasis. Cell Stem Cell, 15, 762–774.

    Article  CAS  PubMed  Google Scholar 

  • De Boeck, A., Pauwels, P., Hensen, K., Rummens, J. L., Westbroek, W., Hendrix, A., Maynard, D., Denys, H., Lambein, K., Braems, G., Gespach, C., Bracke, M., & De Wever, O. (2013). Bone marrow-derived mesenchymal stem cells promote colorectal cancer progression through paracrine neuregulin 1/HER3 signalling. Gut, 62, 550–560.

    Article  CAS  PubMed  Google Scholar 

  • De Luca, A., Lamura, L., Gallo, M., Maffia, V., & Normanno, N. (2012). Mesenchymal stem cell-derived interleukin-6 and vascular endothelial growth factor promote breast cancer cell migration. Journal of Cellular Biochemistry, 113, 3363–3370.

    Article  CAS  PubMed  Google Scholar 

  • Di, G. H., Liu, Y., Lu, Y., Liu, J., Wu, C., & Duan, H. F. (2014). IL-6 secreted from senescent mesenchymal stem cells promotes proliferation and migration of breast cancer cells. PLoS One, 9, e113572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dittmer, J., & Leyh, B. (2014). Paracrine effects of stem cells in wound healing and cancer progression. International Journal of Oncology, 44, 1789–1798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Djouad, F., Plence, P., Bony, C., Tropel, P., Apparailly, F., Sany, J., Noel, D., & Jorgensen, C. (2003). Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood, 102, 3837–3844.

    Article  CAS  PubMed  Google Scholar 

  • Ferlay, J., Shin, H. R., Bray, F., Forman, D., Mathers, C., & Parkin, D. M. (2010). Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. International Journal of Cancer, 127, 2893–2917.

    Article  CAS  PubMed  Google Scholar 

  • Fong, C. Y., Chak, L. L., Biswas, A., Tan, J. H., Gauthaman, K., Chan, W. K., & Bongso, A. (2011). Human Wharton’s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Reviews, 7, 1–16.

    Article  CAS  PubMed  Google Scholar 

  • Ganta, C., Chiyo, D., Ayuzawa, R., Rachakatla, R., Pyle, M., Andrews, G., Weiss, M., Tamura, M., & Troyer, D. (2009). Rat umbilical cord stem cells completely abolish rat mammary carcinomas with no evidence of metastasis or recurrence 100 days post-tumor cell inoculation. Cancer Research, 69, 1815–1820.

    Article  CAS  PubMed  Google Scholar 

  • Halpern, J. L., Kilbarger, A., & Lynch, C. C. (2011). Mesenchymal stem cells promote mammary cancer cell migration in vitro via the CXCR2 receptor. Cancer Letters, 308, 91–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han, I., Yun, M., Kim, E. O., Kim, B., Jung, M. H., & Kim, S. H. (2014). Umbilical cord tissue-derived mesenchymal stem cells induce apoptosis in PC-3 prostate cancer cells through activation of JNK and downregulation of PI3K/AKT signaling. Stem Cell Research & Therapy, 5, 54.

    Article  CAS  Google Scholar 

  • Hong, I. S., Lee, H. Y., & Kang, K. S. (2014). Mesenchymal stem cells and cancer: Friends or enemies? Mutation Research, 768, 98–106.

    Article  CAS  PubMed  Google Scholar 

  • Hung, S. P., Yang, M. H., Tseng, K. F., & Lee, O. K. (2013). Hypoxia-induced secretion of TGF-beta1 in mesenchymal stem cell promotes breast cancer cell progression. Cell Transplantation, 22, 1869–1882.

    Article  PubMed  Google Scholar 

  • Kamat, P., Schweizer, R., Kaenel, P., Salemi, S., Calcagni, M., Giovanoli, P., Gorantla, V. S., Eberli, D., Andres, A. C., & Plock, J. A. (2015). Human adipose-derived Mesenchymal stromal cells may promote breast cancer progression and metastatic spread. Plastic and Reconstructive Surgery, 136, 76–84.

    Article  CAS  PubMed  Google Scholar 

  • Kawabata, A., Ohta, N., Seiler, G., Pyle, M. M., Ishiguro, S., Zhang, Y. Q., Becker, K. G., Troyer, D., & Tamura, M. (2013). Naïve rat umbilical cord matrix stem cells significantly attenuate mammary tumor growth through modulation of endogenous immune responses. Cytotherapy, 15, 586–597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ke, C. C., Liu, R. S., Suetsugu, A., Kimura, H., Ho, J. H., Lee, O. K., & Hoffman, R. M. (2013). In vivo fluorescence imaging reveals the promotion of mammary tumorigenesis by mesenchymal stromal cells. PLoS One, 8, e69658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kéramidas, M., de Fraipont, F., Karageorgis, A., Moisan, A., Persoons, V., Richard, M.-J., Coll, J.-L., & Rome, C. (2013). The dual effect of mesenchymal stem cells on tumour growth and tumour angiogenesis. Stem Cell Research & Therapy, 4, 41–41.

    Article  CAS  Google Scholar 

  • Kidd, S., Spaeth, E., Dembinski, J. L., Dietrich, M., Watson, K., Klopp, A., Battula, V. L., Weil, M., Andreeff, M., & Marini, F. C. (2009). Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem cells (Dayton, Ohio), 27, 2614–2623.

    Article  CAS  Google Scholar 

  • Klopp, A. H., Lacerda, L., Gupta, A., Debeb, B. G., Solley, T., Li, L., Spaeth, E., Xu, W., Zhang, X., Lewis, M. T., Reuben, J. M., Krishnamurthy, S., Ferrari, M., Gaspar, R., Buchholz, T. A., Cristofanilli, M., Marini, F., Andreeff, M., & Woodward, W. A. (2010). Mesenchymal stem cells promote mammosphere formation and decrease E-cadherin in normal and malignant breast cells. PLoS One, 5, e12180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kucerova, L., Matuskova, M., Hlubinova, K., Altanerova, V., & Altaner, C. (2010). Tumor cell behaviour modulation by mesenchymal stromal cells. Molecular Cancer, 9, 129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kucerova, L., Skolekova, S., Demkova, L., Bohovic, R., & Matuskova, M. (2014). Long-term efficiency of mesenchymal stromal cell-mediated CD-MSC/5FC therapy in human melanoma xenograft model. Gene Therapy, 21, 874–887.

    Article  CAS  PubMed  Google Scholar 

  • Lazennec, G., & Lam, P. Y. (2016). Recent discoveries concerning the tumor – mesenchymal stem cell interactions. Biochimica et Biophysica Acta, 1866, 290–299.

    PubMed  Google Scholar 

  • Lee, R. H., Yoon, N., Reneau, J. C., & Prockop, D. J. (2012). Preactivation of human MSCs with TNF-alpha enhances tumor-suppressive activity. Cell Stem Cell, 11, 825–835.

    Article  CAS  PubMed  Google Scholar 

  • Lee, M. J., Heo, S. C., Shin, S. H., Kwon, Y. W., Do, E. K., Suh, D. S., Yoon, M. S., & Kim, J. H. (2013). Oncostatin M promotes mesenchymal stem cell-stimulated tumor growth through a paracrine mechanism involving periostin and TGFBI. The International Journal of Biochemistry & Cell Biology, 45, 1869–1877.

    Article  CAS  Google Scholar 

  • Li, Q., Wijesekera, O., Salas, S. J., Wang, J. Y., Zhu, M., Aprhys, C., Chaichana, K. L., Chesler, D. A., Zhang, H., Smith, C. L., Guerrero-Cazares, H., Levchenko, A., & Quinones-Hinojosa, A. (2014). Mesenchymal stem cells from human fat engineered to secrete BMP4 are nononcogenic, suppress brain cancer, and prolong survival. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 20, 2375–2387.

    Article  CAS  Google Scholar 

  • Lin, R., Wang, S., & Zhao, R. C. (2013). Exosomes from human adipose-derived mesenchymal stem cells promote migration through Wnt signaling pathway in a breast cancer cell model. Molecular and Cellular Biochemistry, 383, 13–20.

    Article  CAS  PubMed  Google Scholar 

  • Ljujic, B., Milovanovic, M., Volarevic, V., Murray, B., Bugarski, D., Przyborski, S., Arsenijevic, N., Lukic, M. L., & Stojkovic, M. (2013). Human mesenchymal stem cells creating an immunosuppressive environment and promote breast cancer in mice. Scientific Reports, 3, 2298.

    Article  PubMed  PubMed Central  Google Scholar 

  • Loebinger, M. R., Kyrtatos, P. G., Turmaine, M., Price, A. N., Pankhurst, Q., Lythgoe, M. F., & Janes, S. M. (2009). Magnetic resonance imaging of mesenchymal stem cells homing to pulmonary metastases using biocompatible magnetic nanoparticles. Cancer Research, 69, 8862–8867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez, M. J., & Spencer, N. D. (2011). In vitro adult rat adipose tissue-derived stromal cell isolation and differentiation. Methods in Molecular Biology, 702, 37–46.

    Article  CAS  PubMed  Google Scholar 

  • Ma, F., Chen, D., Chen, F., Chi, Y., Han, Z., Feng, X., Li, X., & Han, Z. (2015). Human umbilical cord Mesenchymal stem cells promote breast cancer metastasis by Interleukin-8- and Interleukin-6-dependent induction of CD44(+)/CD24(−) cells. Cell Transplantation, 24, 2585–2599.

    Article  PubMed  Google Scholar 

  • Maurya, D. K., Doi, C., Kawabata, A., Pyle, M. M., King, C., Wu, Z., Troyer, D., & Tamura, M. (2010). Therapy with un-engineered naive rat umbilical cord matrix stem cells markedly inhibits growth of murine lung adenocarcinoma. BMC Cancer, 10, 590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menon, L. G., Picinich, S., Koneru, R., Gao, H., Lin, S. Y., Koneru, M., Mayer-Kuckuk, P., Glod, J., & Banerjee, D. (2007). Differential gene expression associated with migration of mesenchymal stem cells to conditioned medium from tumor cells or bone marrow cells. Stem Cells (Dayton, Ohio), 25, 520–528.

    Article  CAS  Google Scholar 

  • Molloy, A. P., Martin, F. T., Dwyer, R. M., Griffin, T. P., Murphy, M., Barry, F. P., O’Brien, T., & Kerin, M. J. (2009). Mesenchymal stem cell secretion of chemokines during differentiation into osteoblasts, and their potential role in mediating interactions with breast cancer cells. International Journal of Cancer, 124, 326–332.

    Article  CAS  PubMed  Google Scholar 

  • Motaln, H., Schichor, C., & Lah, T. T. (2010). Human mesenchymal stem cells and their use in cell-based therapies. Cancer, 116, 2519–2530.

    Article  CAS  PubMed  Google Scholar 

  • Nakamizo, A., Marini, F., Amano, T., Khan, A., Studeny, M., Gumin, J., Chen, J., Hentschel, S., Vecil, G., Dembinski, J., Andreeff, M., & Lang, F. F. (2005). Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Research, 65, 3307–3318.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, K., Ito, Y., Kawano, Y., Kurozumi, K., Kobune, M., Tsuda, H., Bizen, A., Honmou, O., Niitsu, Y., & Hamada, H. (2004). Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Therapy, 11, 1155–1164.

    Article  CAS  PubMed  Google Scholar 

  • Nomoto-Kojima, N., Aoki, S., Uchihashi, K., Matsunobu, A., Koike, E., Ootani, A., Yonemitsu, N., Fujimoto, K., & Toda, S. (2011). Interaction between adipose tissue stromal cells and gastric cancer cells in vitro. Cell and Tissue Research, 344, 287–298.

    Article  CAS  PubMed  Google Scholar 

  • Ono, M., Kosaka, N., Tominaga, N., Yoshioka, Y., Takeshita, F., Takahashi, R. U., Yoshida, M., Tsuda, H., Tamura, K., & Ochiya, T. (2014). Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Science Signaling, 7, ra63.

    Article  CAS  PubMed  Google Scholar 

  • Paris, J. L., de la Torre, P., Manzano, M., Cabanas, M. V., Flores, A. I., & Vallet-Regi, M. (2016). Decidua-derived mesenchymal stem cells as carriers of mesoporous silica nanoparticles. In vitro and in vivo evaluation on mammary tumors. Acta Biomaterialia, 33, 275–282.

    Article  CAS  PubMed  Google Scholar 

  • Park, Y. M., Yoo, S. H., & Kim, S. H. (2013). Adipose-derived stem cells induced EMT-like changes in H358 lung cancer cells. Anticancer Research, 33, 4421–4430.

    CAS  PubMed  Google Scholar 

  • Patel, S. A., Meyer, J. R., Greco, S. J., Corcoran, K. E., Bryan, M., & Rameshwar, P. (2010). Mesenchymal stem cells protect breast cancer cells through regulatory T cells: Role of mesenchymal stem cell-derived TGF-beta. Journal of immunology (Baltimore, Md: 1950), 184, 5885–5894.

    Article  CAS  Google Scholar 

  • Quante, M., Tu, S. P., Tomita, H., Gonda, T., Wang, S. S., Takashi, S., Baik, G. H., Shibata, W., Diprete, B., Betz, K. S., Friedman, R., Varro, A., Tycko, B., & Wang, T. C. (2011). Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell, 19, 257–272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rachakatla, R. S., Marini, F., Weiss, M. L., Tamura, M., & Troyer, D. (2007). Development of human umbilical cord matrix stem cell-based gene therapy for experimental lung tumors. Cancer Gene Therapy, 14, 828–835.

    Article  CAS  PubMed  Google Scholar 

  • Rachakatla, R. S., Pyle, M. M., Ayuzawa, R., Edwards, S. M., Marini, F. C., Weiss, M. L., Tamura, M., & Troyer, D. (2008). Combination treatment of human umbilical cord matrix stem cell-based interferon-beta gene therapy and 5-fluorouracil significantly reduces growth of metastatic human breast cancer in SCID mouse lungs. Cancer Investigation, 26, 662–670.

    Article  CAS  PubMed  Google Scholar 

  • Revell, C. M., & Athanasiou, K. A. (2009). Success rates and immunologic responses of autogenic, allogenic, and xenogenic treatments to repair articular cartilage defects. Tissue Engineering, Part B: Reviews, 15, 1–15.

    Article  CAS  Google Scholar 

  • Rhodes, L. V., Antoon, J. W., Muir, S. E., Elliott, S., Beckman, B. S., & Burow, M. E. (2010). Effects of human mesenchymal stem cells on ER-positive human breast carcinoma cells mediated through ER-SDF-1/CXCR4 crosstalk. Molecular Cancer, 9, 295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ridge, S. M., Sullivan, F. J., & Glynn, S. A. (2017). Mesenchymal stem cells: Key players in cancer progression. Molecular Cancer, 16, 31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasportas, L. S., Kasmieh, R., Wakimoto, H., Hingtgen, S., van de Water, J. A., Mohapatra, G., Figueiredo, J. L., Martuza, R. L., Weissleder, R., & Shah, K. (2009). Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proceedings of the National Academy of Sciences of the United States of America, 106, 4822–4827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasser, A. K., Mundy, B. L., Smith, K. M., Studebaker, A. W., Axel, A. E., Haidet, A. M., Fernandez, S. A., & Hall, B. M. (2007). Human bone marrow stromal cells enhance breast cancer cell growth rates in a cell line-dependent manner when evaluated in 3D tumor environments. Cancer Letters, 254, 255–264.

    Article  CAS  PubMed  Google Scholar 

  • Scherzed, A., Hackenberg, S., Radeloff, A., Froelich, K., Rak, K., Hagen, R., & Kleinsasser, N. (2013). Human mesenchymal stem cells promote cancer motility and cytokine secretion in vitro. Cells, Tissues, Organs, 198, 327–337.

    Article  CAS  PubMed  Google Scholar 

  • Senst, C., Nazari-Shafti, T., Kruger, S., Honer Zu Bentrup, K., Dupin, C. L., Chaffin, A. E., Srivastav, S. K., Worner, P. M., Abdel-Mageed, A. B., Alt, E. U., & Izadpanah, R. (2013). Prospective dual role of mesenchymal stem cells in breast tumor microenvironment. Breast Cancer Research and Treatment, 137, 69–79.

    Article  CAS  PubMed  Google Scholar 

  • Serakinci, N., Fahrioglu, U., & Christensen, R. (2014). Mesenchymal stem cells, cancer challenges and new directions. European Journal of Cancer, 50, 1522–1530.

    Article  CAS  PubMed  Google Scholar 

  • Shin, S. Y., Nam, J. S., Lim, Y., & Lee, Y. H. (2010). TNFalpha-exposed bone marrow-derived mesenchymal stem cells promote locomotion of MDA-MB-231 breast cancer cells through transcriptional activation of CXCR3 ligand chemokines. The Journal of Biological Chemistry, 285, 30731–30740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sigrist, S., Ebel, N., Langlois, A., Bosco, D., Toso, C., Kleiss, C., Mandes, K., Berney, T., Pinget, M., Belcourt, A., & Kessler, L. (2005). Role of chemokine signaling pathways in pancreatic islet rejection during allo- and xenotransplantation. Transplantation Proceedings, 37, 3516–3518.

    Article  CAS  PubMed  Google Scholar 

  • Soerjomataram, I., Lortet-Tieulent, J., Parkin, D. M., Ferlay, J., Mathers, C., Forman, D., & Bray, F. (2012). Global burden of cancer in 2008: A systematic analysis of disability-adjusted life-years in 12 world regions. Lancet, 380, 1840–1850.

    Article  PubMed  Google Scholar 

  • Squillaro, T., Peluso, G., & Galderisi, U. (2016). Clinical trials with Mesenchymal stem cells: An update. Cell Transplantation, 25, 829–848.

    Article  PubMed  Google Scholar 

  • Studeny, M., Marini, F. C., Champlin, R. E., Zompetta, C., Fidler, I. J., & Andreeff, M. (2002). Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Research, 62, 3603–3608.

    CAS  PubMed  Google Scholar 

  • Tholpady, S. S., Katz, A. J., & Ogle, R. C. (2003). Mesenchymal stem cells from rat visceral fat exhibit multipotential differentiation in vitro. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 272, 398–402.

    Article  CAS  Google Scholar 

  • Tobar, N., Avalos, M. C., Mendez, N., Smith, P. C., Bernabeu, C., Quintanilla, M., & Martinez, J. (2014). Soluble MMP-14 produced by bone marrow-derived stromal cells sheds epithelial endoglin modulating the migratory properties of human breast cancer cells. Carcinogenesis, 35, 1770–1779.

    Article  CAS  PubMed  Google Scholar 

  • Usha, L., Rao, G., Christopherson Ii, K., & Xu, X. (2013). Mesenchymal stem cells develop tumor tropism but do not accelerate breast cancer tumorigenesis in a somatic mouse breast cancer model. PLoS One, 8, e67895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner, W., Wein, F., Seckinger, A., Frankhauser, M., Wirkner, U., Krause, U., Blake, J., Schwager, C., Eckstein, V., Ansorge, W., & Ho, A. D. (2005). Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Experimental Hematology, 33, 1402–1416.

    Article  CAS  PubMed  Google Scholar 

  • Wan, S., Liu, Y., Weng, Y., Wang, W., Ren, W., Fei, C., Chen, Y., Zhang, Z., Wang, T., Wang, J., Jiang, Y., Zhou, L., He, T., & Zhang, Y. (2014). BMP9 regulates cross-talk between breast cancer cells and bone marrow-derived mesenchymal stem cells. Cellular Oncology (Dordrecht), 37, 363–375.

    Article  CAS  Google Scholar 

  • Wu, S., Ju, G. Q., Du, T., Zhu, Y. J., & Liu, G. H. (2013). Microvesicles derived from human umbilical cord Wharton’s jelly mesenchymal stem cells attenuate bladder tumor cell growth in vitro and in vivo. PLoS One, 8, e61366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, Q., Wang, L., Li, H., Han, Q., Li, J., Qu, X., Huang, S., & Zhao, R. C. (2012). Mesenchymal stem cells play a potential role in regulating the establishment and maintenance of epithelial-mesenchymal transition in MCF7 human breast cancer cells by paracrine and induced autocrine TGF-beta. International Journal of Oncology, 41, 959–968.

    Article  CAS  PubMed  Google Scholar 

  • Yang, C., Lei, D., Ouyang, W., Ren, J., Li, H., Hu, J., & Huang, S. (2014a). Conditioned media from human adipose tissue-derived Mesenchymal stem cells and umbilical cord-derived Mesenchymal stem cells efficiently induced the apoptosis and differentiation in human Glioma cell lines in vitro. BioMed Research International, 2014, 13.

    Google Scholar 

  • Yang, X., Li, Z., Ma, Y., Gao, J., Liu, S., Gao, Y., & Wang, G. (2014b). Human umbilical cord mesenchymal stem cells promote carcinoma growth and lymph node metastasis when co-injected with esophageal carcinoma cells in nude mice. Cancer Cell International, 14, 93.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, T., Zhang, X., Wang, M., Zhang, J., Huang, F., Cai, J., Zhang, Q., Mao, F., Zhu, W., Qian, H., & Xu, W. (2014c). Activation of mesenchymal stem cells by macrophages prompts human gastric cancer growth through NF-kappaB pathway. PLoS One, 9, e97569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, J. M., Jun, E. S., Bae, Y. C., & Jung, J. S. (2008). Mesenchymal stem cells derived from human adipose tissues favor tumor cell growth in vivo. Stem Cells and Development, 17, 463–473.

    Article  CAS  PubMed  Google Scholar 

  • Yu, X., Su, B., Ge, P., Wang, Z., Li, S., Huang, B., Gong, Y., & Lin, J. (2016). AB237. Human adipose derived stem cells induced cell apoptosis and S phase arrest in bladder tumor. Translational Andrology and Urology, 5, AB237.

    Article  PubMed Central  Google Scholar 

  • Yu, P. F., Huang, Y., Xu, C. L., Lin, L. Y., Han, Y. Y., Sun, W. H., Hu, G. H., Rabson, A. B., Wang, Y., & Shi, Y. F. (2017). Downregulation of CXCL12 in mesenchymal stromal cells by TGFbeta promotes breast cancer metastasis. Oncogene, 36, 840–849.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, T., Lee, Y. W., Rui, Y. F., Cheng, T. Y., Jiang, X. H., & Li, G. (2013). Bone marrow-derived mesenchymal stem cells promote growth and angiogenesis of breast and prostate tumors. Stem Cell Research & Therapy, 4, 70.

    Article  CAS  Google Scholar 

  • Zhang, Y., Dong, W., Wang, J., Cai, J., & Wang, Z. (2017). Human omental adipose-derived mesenchymal stem cell-conditioned medium alters the proteomic profile of epithelial ovarian cancer cell lines in vitro. Oncotargets and Therapy, 10, 1655–1663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, M., Sachs, P. C., Wang, X., Dumur, C. I., Idowu, M. O., Robila, V., Francis, M. P., Ware, J., Beckman, M., Rizki, A., Holt, S. E., & Elmore, L. W. (2012). Mesenchymal stem cells in mammary adipose tissue stimulate progression of breast cancer resembling the basal-type. Cancer Biology & Therapy, 13, 782–792.

    Article  CAS  Google Scholar 

  • Zhao, Y., Gao, J., & Lu, F. (2013). Human adipose-derived stem cell adipogenesis induces paracrine regulation of the invasive ability of MCF-7 human breast cancer cells in vitro. Experimental and Therapeutic Medicine, 6, 937–942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, Q., Gregory, C. A., Lee, R. H., Reger, R. L., Qin, L., Hai, B., Park, M. S., Yoon, N., Clough, B., McNeill, E., Prockop, D. J., & Liu, F. (2015). MSCs derived from iPSCs with a modified protocol are tumor-tropic but have much less potential to promote tumors than bone marrow MSCs. Proceedings of the National Academy of Sciences of the United States of America, 112, 530–535.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Z., Chen, Y., Zhang, H., Min, S., Yu, B., He, B., & Jin, A. (2013). Comparison of mesenchymal stromal cells from human bone marrow and adipose tissue for the treatment of spinal cord injury. Cytotherapy, 15, 434–448.

    Article  CAS  PubMed  Google Scholar 

  • Zischek, C., Niess, H., Ischenko, I., Conrad, C., Huss, R., Jauch, K. W., Nelson, P. J., & Bruns, C. (2009). Targeting tumor stroma using engineered mesenchymal stem cells reduces the growth of pancreatic carcinoma. Annals of Surgery, 250, 747–753.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the South African Medical Research Council in terms of theSAMRC’s Flagship Award Project SAMRC-RFA-UFSP-01-2013/STEM CELLS, the SAMRCExtramural Stem Cell Research and Therapy Unit, the National Research Foundation ofSouth Africa (grant no. 86942), the National Health Laboratory Services Research Trust (grant no. 94453), the University of Pretoria Research Development Programme (A0Z778), the University of Pretoria Vice Chancellor’s Postdoctoral Fellowship and the Institute for Cellular and Molecular Medicine of the University of Pretoria.

Competing Interests

No conflicts of interest, financial or otherwise, are declared by the authors.

Authors’ Contribution

MSP conceptualized the idea of the review, AKO and MAA did the literature search, AKO and MAA analysed the data, AKO and MAA prepared the manuscript, MSP edited and reviewed the drafted manuscript and AKO, MAA and MSP approved of the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Sean Pepper .

Editor information

Editors and Affiliations

Supplementary Tables

Supplementary Tables

Table S1a In vitro experiments that reported a stimulatory effect of BM-MSCs on breast cancer cells
Table S1b In vivo experiments that reported a stimulatory effect of BM-MSCs on breast cancer cells
Table S2a In vitro experiments reporting an inhibitory effect of BM-MSCs on breast cancer cells
Table S2b In vivo experiments reporting an inhibitory effect of BM-MSCs on breast cancer cells
Table S3a In vitro experiments reporting a stimulatory effect of UC-MSCs on tumour growth
Table S3b In vivo experiments reporting a stimulatory effect of UC-MSCs on tumour growth
Table S4a In vitro experiments reporting an inhibitory effect of UC-MSCs on tumour growth
Table S4b In vivo experiments reporting an inhibitory effect of UC-MSCs on tumour growth
Table S5a In vitro experiments reporting a stimulatory effect of AD-MSC on tumour growth
Table S5b In vivo experiments reporting a stimulatory effect of AD-MSC on tumour growth
Table S6a In vitro experiments reporting an inhibitory effect of AD-MSCs on tumour growth
Table S6b In vivo experiments reporting an inhibitory effect of AD-MSCs on tumour growth

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oloyo, A.K., Ambele, M.A., Pepper, M.S. (2017). Contrasting Views on the Role of Mesenchymal Stromal/Stem Cells in Tumour Growth: A Systematic Review of Experimental Design. In: Van Pham, P. (eds) Stem Cells: Biology and Engineering. Advances in Experimental Medicine and Biology(), vol 1083. Springer, Cham. https://doi.org/10.1007/5584_2017_118

Download citation

Publish with us

Policies and ethics