Skip to main content

Particle Stress in Bioreactors

  • Chapter
  • First Online:
Influence of Stress on Cell Growth and Product Formation

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 67))

Abstract

In many biological processes, e.g. the fermentation of cells and sensitive microorganisms or bioconversion with immobilised enzymes, low shear stress is of crucial importance for the optimal course of processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Liepe F (1988) Verfahrenstechnische Berechnungsmethoden. Part 4, VCH, Weinheim

    Google Scholar 

  2. Kolmogoroff A (1958) Collected works on the statistical theory of turbulence. Akademic Verlag, Berlin

    Google Scholar 

  3. Middler M, Finn K (1966) Biotech Bioeng 8:71

    Article  Google Scholar 

  4. Tramper J, Willams JB, Joustra B, Vlak JM (1986) Enzym Microb Technol 8:33

    Article  Google Scholar 

  5. Smith G, Greenfield F, Randerson D (1987) Biotechnol Techniques 1:39

    Article  Google Scholar 

  6. Goldblum S, Bae Y, Hink WF, Calmers JJ (1990) Biotechol Prog 6:383

    Article  CAS  Google Scholar 

  7. Dunlop EH, Namdev PK, Rosenberg MZ (1994) Chemical Engineering Science 49:2263

    Article  CAS  Google Scholar 

  8. Augstein DC, Sinskey AJ, Wang DIC (1971) Biotechnol Bioeng 13:409

    Article  Google Scholar 

  9. Reese ET, Ryu DY (1980) Enzym Microb Technol 2:239

    Article  CAS  Google Scholar 

  10. Strathopulos NA, Hellums JD (1980) Biotechnol Bioeng 27:1021

    Article  Google Scholar 

  11. Ludwig A, Kretzmer G (1992) Enzyme Microb Technol 14:209

    Article  CAS  Google Scholar 

  12. Märkl H, Bronnemeier R (1982) Biotech Bioeng 24:553

    Article  Google Scholar 

  13. Loughlin PFM, Malone DM, Murtagh JT, Kieran PM (1998) Biotech Bioeng 58:595

    Article  Google Scholar 

  14. Sumino Y, Akiyama S, Fukuda H (1972) J Ferment Technol 50:203

    Google Scholar 

  15. Kato Y, Hiraoka S, Tada Y, Shirai S, Ue T, Koh ST, Yamaguchi T (1995) Kogaku-Ronbunshu 21(2):365

    CAS  Google Scholar 

  16. Kato Y, Hiraoka S, Tada Y, Koh ST, Lee YS (1996) Trans Ichem E 74:451

    CAS  Google Scholar 

  17. Büchs J, Maier U, Milbradt C, Toels B (1999) submitted Biotech and Bioeng

    Google Scholar 

  18. Henzler HJ, Schedel M (1991) Bioprocess Engineering 7:123

    Article  CAS  Google Scholar 

  19. Zoels B (1992) Quantifizierung und Optimierung der Screening-Bedingungen im Schüttelkolben Master Thesis Fachhochschule Mannheim

    Google Scholar 

  20. Henzler HJ (1978) Homogenisieren von Flüssigkeiten und Gasen. VDI-Forschungsheft 587

    Google Scholar 

  21. Judat H (1976) Dissertation, Universität Berlin

    Google Scholar 

  22. Henzler HJ (1982) Chem Ing Tech 54:461

    Article  CAS  Google Scholar 

  23. Henzler HJ (1998) Mischen und Rühren. GVC-Tagung Baden-Baden

    Google Scholar 

  24. Möckel HO (1978) Dissertation, Technische Hochschule, Köthen

    Google Scholar 

  25. Laufhütte HD(1986) Dissertation, TU München

    Google Scholar 

  26. Geissler RK (1991) Dissertation, TU München

    Google Scholar 

  27. Henzler HJ, Biedermann A (1996) Chem Ing Tech 68:1546

    Article  CAS  Google Scholar 

  28. Henzler HJ, Kauling J (1993) Bioprocess Engineering 9:61

    Article  CAS  Google Scholar 

  29. Aunins, Henzler HJ (1993) Aeration in Cell Culture Bioreactors. In: Rehm HJ, Reed G, Pühler A Stadler P Biotechnology VCH 3:219

    Google Scholar 

  30. Handa A, Emery AN, Spier RE (1987) Develop Biol Stand 66:241

    CAS  Google Scholar 

  31. Handa-Corrigan A, Emercy AN, Spier RE (1989) Enzyme MicrobTechnol 11:230

    Article  CAS  Google Scholar 

  32. Newitt DM, Dombrowski N, Knelman FH (1954) Trans Instn Chem Engrs 32:244

    CAS  Google Scholar 

  33. Garner FH, Ellis SRM, Lacey JA (1954) Trans Instn Chem Engrs 32:244

    Google Scholar 

  34. Boulton-Stone JM, Blake JR (1993) J Fluid Mech 254:237

    Article  Google Scholar 

  35. Briones MA, Brodkey RS, Chalmers JJ (1994) Chem Eng Sci 14:2301

    Article  Google Scholar 

  36. Briones MA, Chalmers RS (1994) Biotech Bioeng 44:1089

    Article  Google Scholar 

  37. Naue G, Liepe F, Maschek HJ, Reher, EO, Schenk R (1988) Technische Strömungslehre I, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig

    Google Scholar 

  38. Reiter M (1983). Untersuchungen zur Flokkulation im Zylinderrühreaktor und im durchströmten Rohr. Dissertation, Universität Berlin

    Google Scholar 

  39. Taylor G (1936) Proc R Soc London A157:546

    Article  Google Scholar 

  40. Baldyga J, Bourne JR, Zimmermann B (1994) Chem Eng Sci 49:1937

    Article  CAS  Google Scholar 

  41. Baldyga J, Bourne JR, Gholap RV (1995) Chem Eng Sci 50:1877

    Article  CAS  Google Scholar 

  42. Tralles S (1998) Entwicklung eines Testsystems zur Bestimmung der Scherbeanspruchung in Bioreaktoren. Master Thesis, Universität Paderborn

    Google Scholar 

  43. Hoffmann J, Tralles S, Hempel DC (1992) Chem Ing Tech 64:953

    Article  Google Scholar 

  44. Biedermann A, Henzler HJ (1994) Chem Ing Tech 66:209

    Article  CAS  Google Scholar 

  45. Biedermann A (1994) Scherbeanspruchung in Bioreaktoren. Dissertation Universität Köln

    Google Scholar 

  46. Bücher K (1993) Scherbeanspruchung in Bioreaktoren. Master Thesis Universität Paderborn

    Google Scholar 

  47. Jüsten P (1993) Scherbeanspruchung in Bioreaktoren. Master Thesis Technische Hochschule Aachen

    Google Scholar 

  48. Ke\ler M (1994) Scherbeanspruchung in Bioreaktoren. Master Thesis Universität Köln

    Google Scholar 

  49. Schumacher C (1994) Partikelbeanspruchung in Reaktoren. Master Thesis Technische Hochschule Aachen

    Google Scholar 

  50. Hoffmann J, Büscher K, Hempel DC (1995) Chem Ing Tech 67:210

    Article  CAS  Google Scholar 

  51. Hoffmann J (1994) Scherkräfte in Bioreaktoren. Dissertation Universität Paderborn

    Google Scholar 

  52. Bücher K (1997) Bestimmung von mechanischen Beanspruchungen in Zweiphasensystemen. Dissertation Universität Paderborn

    Google Scholar 

  53. Ayazai Shamlou P, Makagiansar HY, Ison AP, Lilly MD (1994) Chem Eng Sci 16:2631

    Google Scholar 

  54. Paul GC, Thomas CR (1998) Advances in Biochem Eng Biotechnology 60:1

    Article  CAS  Google Scholar 

  55. Pons MN, Vivier H (1998) Advances in Biochem Eng Biotechnology 60:61

    CAS  Google Scholar 

  56. Schügerl K, Gerlach SR, Siedenburg D (1998) Advances in Biochem Eng Biotechnology 60:195

    Google Scholar 

  57. van Hamersfeld EH, van der Lans RGJM, Luyben KCAM (1997) Biotech Bioeng 56:190

    Article  Google Scholar 

  58. Moreira JL, Cruz PE, Santana CS, Aunins JG (1995) Chem Eng Sci 50:2747

    Article  CAS  Google Scholar 

  59. Shamlou PA, Stravrinides N, Titchner-Höcker N, Hoore M (1994) Chem Eng Sci 49:2647

    Article  Google Scholar 

  60. Jüsten P (1997) Dependence of Penicillium Chrysogenum growth, morphology, vacuolation and productivity on impeller type and agitation intensity. PHD Thesis University of Birmingham

    Google Scholar 

  61. Henzler HJ, Kauling J (1985) Scale up of mass transfer in highly viscous liquids. Preprints of 5th European Conference on Mixing, Würzburg

    Google Scholar 

  62. Dechema Study for research and development: “Standardization and equipment recommendations for bioreactors and peripheral devices” (1990)

    Google Scholar 

  63. Zhou G, Kresta SM (1996) Chem Eng Sci 44:2207

    Google Scholar 

  64. Schlichting H (1968) Boundary-Layer Theory. McGraw-Hill New York

    Google Scholar 

  65. Flagmeyer A, Konstantinov K, Henzler HJ submitted in Biotechnol and Bioeng

    Google Scholar 

  66. Meier SJ, Hatton TA, Wang DIC (1999) Biotechnol and Bioeng 62:468

    Article  CAS  Google Scholar 

  67. Hülscher M (1990) Fortschritts Berichte VDI Z, Series 3, no. 339, VDI, Düsseldorf

    Google Scholar 

  68. Blenke H (1979) Adv Biochem Eng 13:121

    Google Scholar 

  69. Merchuk JC, Berzin I (1995) Chem Eng Sci 50:2225

    Article  CAS  Google Scholar 

  70. Ueda K, Takebe H, Takahashi J, Nomoto M (1971) Ferment Technol 49:981

    CAS  Google Scholar 

  71. Büchs J, Zoels B (1999) Evaluation of the Maximum Specific Power Consumption in Shaking Bioreactors, Proceedings of 3th International Symposium on Mixing in Industrial Processes (ISMIP-3) 19–22 Sept 1999 Japan

    Google Scholar 

  72. Yoshida F, Yamada T (1971) Fermen Technol 49:235

    Google Scholar 

  73. Smith JJ, Lilly, MD, Fox RI (1990) Biotech Bioeng 35:1011

    Article  CAS  Google Scholar 

  74. Smith GC, Greenfield FP, Randerson DH (1987) Biotechnol Techniques 1:39

    Article  Google Scholar 

  75. Abu-Reesh I, Kargi F (1989) Journal of Biotechnology 9:167

    Article  CAS  Google Scholar 

  76. Cherry RS, Known KJ (1990) Biotechnol and Bioeng 36:563

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Henzler, HJ. (2000). Particle Stress in Bioreactors. In: Schügerl, K., et al. Influence of Stress on Cell Growth and Product Formation. Advances in Biochemical Engineering/Biotechnology, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47865-5_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-47865-5_2

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66687-5

  • Online ISBN: 978-3-540-47865-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics