Skip to main content
Log in

Suitability of the shaking flask for oxygen supply to microbiological cultures

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Due of its simplicity the shaking flask is used in serial studies, e.g. in the screening for secondary metabolites or in the optimization of fermentation processes. Experimental investigations in these small bioreactors are often the first step in developing a large-scale fermentation process.

Movement of the flask should produce sufficient mixing, supply of oxygen, and removal of carbon dioxide. In the case of fluids with low or moderate viscosity, gas transport is the most important aspect. This publication summarizes data necessary to calculate the gas transport. These data are derived from the consideration of the gas diffusions through the cotton plug as well as from the substance transport between the gas and liquid phases. As a result suitable fermentation conditions can be selected. Finally, the performance limits of the shaking flask are illustrated using the example of the oxygen supply in a Streptomyces tendae fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A s :

Cross section of plug

A :

Surface area of liquid in flask

a :

A/V F specific phase interface area

c :

Concentration

c * :

Saturation concentration

c :

Plug diffusion term

D :

Widest diameter of flask

\(\mathbb{D}_x ,\mathbb{D}_y ,\mathbb{D}_z \) :

Diffusion coefficients in multicomponent gas mix tures

\(\mathbb{D}_{xy} ,\mathbb{D}_{xz} ,\mathbb{D}_{yz} \) :

Diffusion coefficients in binary gas mixtures

\(\mathbb{D}_{\text{F}} \) :

Diffusion coefficient of oxygen in the liquid

d :

Diameter of neck of flask

e :

Eccentricity

G :

Volume-based mass flow

G m :

Maximum volume-based mass flow

g :

Acceleration due to gravity

h :

Height coordinate

¯H :

Mean height of plug

Hy :

p i/c *, Henry constant

K :

Consistency index

k :

D xy/D xz, Ratio of diffusion coefficients in binary gas mixtures

k M :

Monod constant

k L a :

Mass transport coefficient: gas/liquid

M :

Molecular weight

m :

Flow exponent

n :

Speed of shaking

p :

Pressure

p i :

Partial pressure of gas component i

q :

Area-based flow of volume

R :

\( = {{q_{{\text{CO}}_{\text{2}} } } \mathord{\left/ {\vphantom {{q_{{\text{CO}}_{\text{2}} } } {q_{{\text{O}}_{\text{2}} } }}} \right. \kern-\nulldelimiterspace} {q_{{\text{O}}_{\text{2}} } }}\), respiration ratio

Sc :

\( = {v \mathord{\left/ {\vphantom {v {\mathbb{D}_{\text{F}} }}} \right. \kern-\nulldelimiterspace} {\mathbb{D}_{\text{F}} }}\), Schmidt number

T :

Absolute temperature

V :

Flask volume

V F :

Volume of liquid in flask

w :

Velocity of the Stefan flow

x, y, z :

Ratios of the partial pressures of the gases O2, CO2, N2

γ :

Rate of shear

η :

Dynamic viscosity of the liquid

ν :

Kinematic viscosity of the liquid

ϱ :

Density of the liquid

ϱ x,\(\varrho _{{\text{O}}_{\text{2}} } \) :

Density of O2 gas

σ :

Surface tension

0:

State in gas volume of shaking flask

1:

State in outside air

G:

Gas volume

x, y, z:

O2, CO2, N2

References

  1. Henzler, H.-J.; Schedel, M.; Müller, P.: Nichtäquimolare Diffusion im Schüttelkolben: Methode zur Bestimmung der Atmungsaktivität biologischer Kulturen. Chem.-Ing. Tech. 58 (1986) 234–235

    Google Scholar 

  2. Wilke, C. R.: Diffusional properties of multicomponent gases. Chem. Eng. Progr. 46 (1950) 95–104

    Google Scholar 

  3. Perry, J. H.: Chem. Eng. Handbook, McGraw-Hill Book Co. 1963

  4. Dans'Lax: Taschenbuch für Chemiker und Physiker. Springer-Verlag 1967

  5. Landold Börnstein: Zahlenwerte aus Naturwissenschaften und Technik. Teil 5a. Springer-Verlag 1969

  6. Schultz, J. S.: Cotton closure as an aeration barrier in shaken flask fermentations. Appl. Microbiol., vol. 12/4 (1964) 305–310

    Google Scholar 

  7. Ping Shu: Oxygen uptake in shake-flask fermentations. Agricultural and Food Chemistry, vol. 1/18 (1953) 1113–1123

    Google Scholar 

  8. Corman, J. u. a.: Adsorption rates in laboratory and pilot plant equipment. Appl. Microbiol., vol. 5 (1957) 313–318

    Google Scholar 

  9. Gaden, E. L.: Improved shaken flask performance. Biotechnology and Bioengineering, vol. IV (1962) 99–103

    Google Scholar 

  10. Freedmann, D.: The shaker in bioengineering. In: Methods in Microbiology, No. 2. London, New York: Academic Press, 1970

    Google Scholar 

  11. McDaniel, L. E. et al.: Effect of oxygen supply on growth. Appl. Microbiology vol. 13/1 (1965)

  12. Henzler, H.-J.; Schäfer, E. E.: Viskose und elastische Eigenschaften von Fermentationslösungen. Chem.-Ing. Tech. 59 (1987) 940–944

    Google Scholar 

  13. Bin, K. A.: Mass transfer to the free interface in stirred vessels. Chem. Eng. Commun 31 (1984) 155–183

    Google Scholar 

  14. Hülscher, M.: Untersuchungen zum Stoffübergang gasförmigflüssig im Schüttelkolben. Diplomarbeit, Universität Dortmund, 1986

  15. Steinhoff, A.: Untersuchungen zum Sauerstofftransport gasförmig-flüssig im Schüttelkolben. Diplomarbeit, Fachhochschule Lippe, 1982

  16. Lamont, J. C.; Scott, D. S.; Messung des Stoffübergangs von Luftsauerstoff in turbulent strömende Flüssigkeiten mit ebener Phasengrenzfläche. AJChE J. 16 (1970) 513

    Google Scholar 

  17. Risse, F. U.; Weiland, P.; Onken, U.: Scale-up of nikkomycin. Chem.-Ing. Tech. 57 (1985) 7

    Google Scholar 

  18. Henzler, H.-J.: Wärme- und Stofftransport in Bioreaktoren. Reprint Dechema/GVC-Vortragstagung „Bioreaktoren“ in Darmstadt 1987

  19. Crueger, W; Henzler, H.-J.; Schedel, M.: Preprints XIII. International Congress of Microbiology, Boston, USA, 9.–13. 8 1982

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henzler, H.J., Schedel, M. Suitability of the shaking flask for oxygen supply to microbiological cultures. Bioprocess Engineering 7, 123–131 (1991). https://doi.org/10.1007/BF00369423

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00369423

Keywords

Navigation