Skip to main content

Non-equilibrium Thermodynamics

  • Textbook
  • © 2022

Overview

  • Offers proofs of existing variational principles for non-equilibrium thermodynamics
  • Highlights the role of macroscopic quantities
  • Provides a valuable addition to the theme for students and practitioners

Part of the book series: Lecture Notes in Physics (LNP, volume 1007)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

About this book

The importance of thermodynamics, particularly its Second Principle, to all branches of science in which systems with very large numbers of particles are involved cannot be overstated. This book offers a panoramic view of non-equilibrium thermodynamics. Perhaps the two most attractive aspects of thermodynamic equilibrium are its stability and its independence from the specifics of the particular system involved. Does an equivalent exist for non-equilibrium thermodynamics? Many researchers have tried to describe such stability in the same way that the Second Principle describes the stability of thermodynamic equilibrium - and failed. Most of them invoked either entropy, or its production rate, or some modified version of it. In their efforts, however, those researchers have found a lot of useful stability criteria for far-from-equilibrium states. These criteria usually take the form of variational principles, in terms of the minimization or maximization of some quantity. The aimof this book is to discuss these variational principles by highlighting the role of macroscopic quantities. This book is aimed at a wider audience than those most often exposed to the criteria described, i.e., undergraduates in STEM, as well as the usual interested and invested professionals.

 


Similar content being viewed by others

Keywords

Table of contents (7 chapters)

Authors and Affiliations

  • Dipartimento di Ingegneria Civile, Chimica e Ambientale, University of Genoa, Genoa, Italy

    Andrea Di Vita

About the author

Andrea Di Vita was trained as a plasma physicist, and has been engaged in nuclear fusion research. His work mainly concerns the stability of gas turbine burners against spontaneous, dangerous thermo-acoustic instabilities (AKA 'humming'), which transform combustion energy into mechanical energy and may destroy low-pollution, high-power burners. His primary fields of interest are non-equilibrium thermodynamics and non-linear analysis. He is a Visiting Scientist at the Università degli Studi di Genova, Dipartimento di Ingegneria civile, chimica e ambientale (DICCA).


Bibliographic Information

Publish with us