Skip to main content

Advances in Non-Archimedean Analysis and Applications

The p-adic Methodology in STEAM-H

  • Book
  • © 2021

Overview

  • Features state-of-the-art developments, techniques, and applications of non- Archimedean analysis
  • Gathers contributions by leading international experts in the field
  • Introduces open problems and areas for future research

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (9 chapters)

Keywords

About this book

This book provides a broad, interdisciplinary overview of non-Archimedean analysis and its applications. Featuring new techniques developed by leading experts in the field, it highlights the relevance and depth of this important area of mathematics, in particular its expanding reach into the physical, biological, social, and computational sciences as well as engineering and technology.


In the last forty years the connections between non-Archimedean mathematics and disciplines such as physics, biology, economics and engineering, have received considerable attention. Ultrametric spaces appear naturally in models where hierarchy plays a central role – a phenomenon known as ultrametricity. In the 80s, the idea of using ultrametric spaces to describe the states of complex systems, with a natural hierarchical structure, emerged in the works of Fraunfelder, Parisi, Stein and others. A central paradigm in the physics of certain complex systems – for instance,proteins – asserts that the dynamics of such a system can be modeled as a random walk on the energy landscape of the system. To construct mathematical models, the energy landscape is approximated by an ultrametric space (a finite rooted tree), and then the dynamics of the system is modeled as a random walk on the leaves of a finite tree. In the same decade, Volovich proposed using ultrametric spaces in physical models dealing with very short distances. This conjecture has led to a large body of research in quantum field theory and string theory. In economics, the non-Archimedean utility theory uses probability measures with values in ordered non-Archimedean fields. Ultrametric spaces are also vital in classification and clustering techniques. Currently, researchers are actively investigating the following areas: p-adic dynamical systems, p-adic techniques in cryptography, p-adic reaction-diffusion equations and biological models, p-adic models in geophysics, stochastic processes in ultrametric spaces, applications of ultrametric spaces in data processing, and more. 
 
This contributed volume gathers the latest theoretical developments as well as state-of-the art applications of non-Archimedean analysis. It covers non-Archimedean and non-commutative geometry, renormalization, p-adic quantum field theory and p-adic quantum mechanics, as well as p-adic string theory and p-adic dynamics. Further topics include ultrametric bioinformation, cryptography and bioinformatics in p-adic settings, non-Archimedean spacetime, gravity and cosmology, p-adic methods in spin glasses, and non-Archimedean analysis of mental spaces. By doing so, it highlights new avenues of research in the mathematical sciences, biosciences and computational sciences.



Editors and Affiliations

  • University of Texas Rio Grande Valley, Brownsville, USA

    W. A. Zúñiga-Galindo

  • Department of Mathematics, Howard University, Washington, DC, USA

    Bourama Toni

About the editors

Wilson Zúñiga-Galindo is a Research Professor in the Department of Mathematics of the CINVESTAV - Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico. A member of the Colombian and Mexican Academy of Sciences, his research focuses on number theory, algebraic geometry, mathematical physics and non-Archimedean analysis. He has published more than fifty research articles and two books, including “Pseudodifferential Equations Over Non-Archimedean Spaces” (Springer, 2016, ISBN 978-3-319-46737-5).

Bourama Toni is graduate of Universite de Montreal, and is presently a full Professor and Chair of the Department of Mathematics at Howard University, Washington DC, USA. He is also a founder and the Editor-in-Chief of the Springer's STEAM-H series. Dr. Toni's research interests are in differential and nonlinear analysis and related topics, including p-adic analysis, game theory and feedback loops analysis, and applications tonaval engineering and biosciences. He has published several books with Springer.

Bibliographic Information

Publish with us