Skip to main content

Introduction: Advancing Non-Archimedean Mathematics

  • Chapter
  • First Online:
Advances in Non-Archimedean Analysis and Applications

Abstract

Hermann Weyl is quoted with saying in Philosophie der Mathematik und Naturwissenschaft 1927, p. 36: As a matter of fact, it is by no means impossible to build up a consistent “non-Archimedean” theory of magnitudes in which the axiom of Eudoxus (usually named after Archimedes) does not hold. Indeed the Axiom of Eudoxus/Archimedes is the main difference between the real and p-adic/ultrametric space; however the axiom is more of a physical one which concerns the process of measurement: exchanging the real numbers field with the p-adic number field is tantamount to exchanging axiomatics in quantum physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anashin, Vladimir, Khrennikov Andrei, Applied algebraic dynamics. De Gruyter Expositions in Mathematics, 49. Walter de Gruyter & Co., Berlin, 2009.

    Google Scholar 

  2. Murtagh Fionn, Thinking ultrametrically, thinking p-adically. Clusters, orders, and trees: methods and applications, 249–272, Springer Optim. Appl., 92, Springer, New York, 2014.

    Google Scholar 

  3. Dragovich B., Khrennikov A. Yu., Kozyrev S. V., Volovich I. V., Zelenov E. I., p-Adic mathematical physics: the first 30 years, p-Adic Numbers Ultrametric Anal. Appl. 9 (2017), no. 2, 87–121.

    Google Scholar 

  4. Vladimirov V. S., Volovich I. V., Zelenov E. I., p-adic analysis and mathematical physics. Series on Soviet and East European Mathematics, 1. World Scientific Publishing Co., Inc., River Edge, NJ, 1994.

    Google Scholar 

  5. Khrennikov Andrei, Non-Archimedean analysis: quantum paradoxes, dynamical systems and biological models. Mathematics and its Applications, 427. Kluwer Academic Publishers, Dordrecht, 1997.

    Google Scholar 

  6. Khrennikov Andrei, p-Adic valued distributions in mathematical physics. Mathematics and its Applications, 309. Kluwer Academic Publishers Group, Dordrecht, 1994.

    Google Scholar 

  7. Zúñiga-Galindo W. A., Pseudodifferential equations over non-Archimedean spaces. Lecture Notes in Mathematics, 2174. Springer, Cham, 2016.

    Google Scholar 

  8. Khrennikov Andrei Yu., Kozyrev Sergei V., Zúñiga-Galindo W. A., Ultrametric pseudodifferential equations and applications. Encyclopedia of Mathematics and its Applications, 168. Cambridge University Press, Cambridge, 2018.

    Google Scholar 

  9. Frauenfelder H, Chan S. S., Chan W. S. (eds), The Physics of Proteins. Springer-Verlag, 2010.

    Google Scholar 

  10. Rammal R., Toulouse G., Virasoro M. A., Ultrametricity for physicists, Rev. Modern Phys. 58 (1986), no. 3, 765–788.

    Article  MathSciNet  Google Scholar 

  11. Albeverio Sergio, Karwowski Witold, Jump processes on leaves of multibranching trees, J. Math. Phys. 49 (2008), no. 9, 093503, 20 pp.

    Google Scholar 

  12. Avetisov V. A., Bikulov A. Kh., Osipov V. A., p-adic description of characteristic relaxation in complex systems, J. Phys. A 36 (2003), no. 15, 4239–4246.

    Google Scholar 

  13. Avetisov V. A., Bikulov A. H., Kozyrev S. V., Osipov V. A., p-adic models of ultrametric diffusion constrained by hierarchical energy landscapes, J. Phys. A 35 (2002), no. 2, 177–189.

    Google Scholar 

  14. Hoffmann K. H., Sibani P., Diffusion in Hierarchies, Phys. Rev. A 38, 4261–4270 (1988).

    Article  MathSciNet  Google Scholar 

  15. Karwowski W., Diffusion processes with ultrametric jumps, Rep. Math. Phys. 60 (2007), no. 2, 221–235.

    Article  MathSciNet  Google Scholar 

  16. Kochubei Anatoly N., Pseudo-differential equations and stochastics over non-Archimedean fields. Marcel Dekker, Inc., New York, 2001.

    Book  Google Scholar 

  17. Kozyrev S. V., Methods and Applications of Ultrametric and p-Adic Analysis: From Wavelet Theory to Biophysics, Sovrem. Probl. Mat., 12, Steklov Math. Inst., RAS, Moscow, 2008, 3–168.

    Google Scholar 

  18. Volovich I. V., p-adic string, Classical Quantum Gravity 4(4), L83–L87 (1987).

    Google Scholar 

  19. Varadarajan V. S., Reflections on quanta, symmetries, and supersymmetries. Springer, New York, 2011.

    Book  Google Scholar 

  20. Freund Peter G. O., Witten Edward: Adelic string amplitudes. Phys. Lett. B 199(2), 191–194 (1987).

    Article  MathSciNet  Google Scholar 

  21. Aref’eva I. Ya., Dragović, B. G., Volovich I. V., On the adelic string amplitudes, Phys. Lett. B 209(4), 445–450 (1988).

    Google Scholar 

  22. Gubser Steven S., Knaute Johannes, Parikh Sarthak, Samberg Andreas, Witaszczyk Przemek, p-adic AdS/CFT, Comm. Math. Phys. 352 (2017), no. 3, 1019–1059.

    Article  MathSciNet  Google Scholar 

  23. Heydeman Matthew, Marcolli Matilde, Saberi Ingmar A., Stoica Bogdan, Tensor networks, p-adic fields, and algebraic curves: arithmetic and the AdS3/CFT2 correspondence, Adv. Theor. Math. Phys. 22 (2018), no. 1, 93–176.

    Google Scholar 

  24. Bocardo-Gaspar M., Veys Willem, Zúñiga-Galindo W. A., Meromorphic continuation of Koba-Nielsen string amplitudes, J. High Energy Phys. 2020, no. 9, 138, 43 pp.

    Google Scholar 

  25. García-Compeán H., López Edgar Y., Zúñiga-Galindo W. A., p-Adic open string amplitudes with Chan-Paton factors coupled to a constant B-field, Nuclear Phys. B 951 (2020), 114904, 33 pp.

    MathSciNet  MATH  Google Scholar 

  26. Bocardo-Gaspar M., García-Compeán H., Zúñiga-Galindo W. A., On p-adic string amplitudes in the limit p approaches to one, J. High Energy Phys. 2018, no. 8, 043, front matter+22 pp.

    Google Scholar 

  27. Abdelmalek Abdesselam, Ajay Chandra and Gianluca Guadagni, Rigorous quantum field theory functional integrals over the p-adics I: anomalous dimensions. arXiv:1302.5971.

    Google Scholar 

  28. Gubser Steven S., A p-adic version of AdS/CFT, Adv. Theor. Math. Phys. 21(7) (2017), 1655–1678.

    Article  MathSciNet  Google Scholar 

  29. Kochubei A. N. and Sait-Ametov M. R., Interaction measures on the space of distributions over the field of p −adic numbers, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 6(3) (2003), 389–411.

    Article  MathSciNet  Google Scholar 

  30. Lerner E. Y. and Misarov M. D., Scalar models in p −adic quantum field theory and hierarchical models, Theor. Math. Phys. 78 (1989) 248–257.

    Article  Google Scholar 

  31. Missarov M. D., p −adic φ 4 −theory as a functional equation problem, Lett. Math. Phys. 39(3) (1997), 253–260 .

    Google Scholar 

  32. Missarov M. D., p −adic renormalization group solutions and the Euclidean renormalization group conjectures, p-Adic Numbers Ultrametric Anal. Appl. 4(2) (2012), 109–114.

    Google Scholar 

  33. Mendoza-Martínez M. L., Vallejo J. A., Zúñiga-Galindo W. A., Acausal quantum theory for non-Archimedean scalar fields, Rev. Math. Phys. 31 (2019), no. 4, 1950011, 46 pp.

    Google Scholar 

  34. Arroyo-Ortiz Edilberto, Zúñiga-Galindo W. A., Construction of p-adic covariant quantum fields in the framework of white noise analysis, Rep. Math. Phys. 84 (2019), no. 1, 1–34.

    Google Scholar 

  35. Smirnov V. A., Renormalization in p-adic quantum field theory, Modern Phys. Lett. A 6(15) (1991), 1421–1427.

    Article  MathSciNet  Google Scholar 

  36. Smirnov V. A., Calculation of general p −adic Feynman amplitude, Comm. Math. Phys. 149(3) (1992), 623–636.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bourama Toni or W. A. Zúñiga-Galindo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Toni, B., Zúñiga-Galindo, W.A. (2021). Introduction: Advancing Non-Archimedean Mathematics. In: Zúñiga-Galindo, W.A., Toni, B. (eds) Advances in Non-Archimedean Analysis and Applications. STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health. Springer, Cham. https://doi.org/10.1007/978-3-030-81976-7_1

Download citation

Publish with us

Policies and ethics