Abstract
Forest bathing has beneficial effects on human health via showering of forest aerosols as well as physical relaxation. Terpenes that consist of multiple isoprene units are the largest class of organic compounds produced by various plants, and one of the major components of forest aerosols. Traditionally, terpene-containing plant oil has been used to treat various diseases without knowing the exact functions or the mechanisms of action of the individual bioactive compounds. This review categorizes various terpenes easily obtained from forests according to their anti-inflammatory, anti-tumorigenic, or neuroprotective activities. Moreover, potential action mechanisms of the individual terpenes and their effects on such processes, which are described in various in vivo and in vitro systems, are discussed. In conclusion, the studies that show the biological effectiveness of terpenes support the benefits of forest bathing and propose a potential use of terpenes as chemotherapeutic agents for treating various human diseases.
Abbreviations
- BCP:
-
ß-caryophyllene
- GPP:
-
geranyl pyrophosphate
- DMAPP:
-
dimethylallyl pyrophosphate
- IPP:
-
isopentenyl pyrophosphate
- MAPK:
-
mitogen-activated protein kinase
- NF-ΚB:
-
nuclear factor kappa B
- IL:
-
interleukin
- TNF-oα:
-
tumor necrosis factor-oα
- NO:
-
nitric oxide
- LPS:
-
lipopolysaccharide
- MMP:
-
matrix metalloproteinases
- AD:
-
Alzheimer’s disease
- PD:
-
Parkinson’s disease
References
Frumkin, H. (2001) Beyond toxicity: human health and the natural environment. Am. J. Prev. Med., 20, 234–240.
Tsunetsugu, Y., Park, B.J. and Miyazaki, Y. (2010) Trends in research related to “Shinrin-yoku” (taking in the forest atmosphere or forest bathing) in Japan. Environ. Health Prev. Med., 15, 27–37.
Seo, S.C., Park, S.J., Park, C.W., Yoon, W.S., Choung, J.T. and Yoo, Y. (2015) Clinical and immunological effects of a forest trip in children with asthma and atopic dermatitis. Iran J. Allergy Asthma Immunol., 14, 28–36.
Douglass, R.W. (1982) Forest recreation (3rd edition), Pergamon Press.
Spievogel, I. and Spalek, K. (2012) Medicinal plants uesed in pediatric prophylactic method of Sebastian Kneipp. Nat. J., 45, 9–18.
Joos, S., Rosemann, T., Szecsenyi, J., Hahn, E.G., Willich, S.N. and Brinkhaus, B. (2006) Use of complementary and alternative medicine in Germany: a survey of patients with inflammatory bowel disease. BMC Complement. Altern. Med., 6, 19.
Park, B.J., Tsunetsugu, Y., Kasetani, T., Kagawa, T. and Miyazaki, Y. (2010) The physiological effects of Shinrin-yoku (taking in the forest atmosphere or forest bathing): evidence from field experiments in 24 forests across Japan. Environ. Health Prev. Med., 15, 18–26.
Song, C., Ikei, H. and Miyazaki, Y. (2016) Physiological effects of nature therapy: A review of the research in Japan. Int. J. Environ. Res. Public Health, 13, E781.
Gershenzon, J. and Dudareva, N. (2007) The function of terpene natural products in the natural world. Nat. Chem. Biol., 3, 408–414.
Chappell, J. (2002) The genetics and molecular genetics of terpene and sterol origami. Curr. Opin. Plant Biol., 5, 151–157.
Mewalal, R., Rai, D.K., Kainer, D., Chen, F., Külheim, C., Peter, G.F. and Tuskan, G.A. (2016) Plant-derived terpenes: A feedstock for specialty biofuels. Trends Biotechnol., S0167–7799(16)30128–7.
Kirby, J. and Keasling, J.D. (2009) Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu. Rev. Plant Biol., 60, 335–355.
Zulak, K.G. and Bohlmann, J. (2010) Terpenoid biosynthesis and specialized vascular cells of conifer defense. J. Integr. Plant Biol., 52, 86–97.
Lange, B.M. and Ahkami, A. (2013) Metabolic engineering of plant monoterpenes, sesquiterpenes and diterpenes: current status and future opportunities. Plant Biotechnol. J., 11, 169–196.
Dubey, V.S., Bhalla, R. and Luthra, R. (2003) An overview of the non-mevalonate pathway for terpenoid biosynthesis in plants. J. Biosci., 28, 637–646.
Matsuba, Y., Nguyen, T.T., Wiegert, K., Falara, V., Gonzales-Vigil, E., Leong, B., Schäfer, P., Kudrna, D., Wing, R.A., Bolger, A.M., Usadel, B., Tissier, A., Fernie, A.R., Barry, C.S. and Pichersky, E. (2013) Evolution of a complex locus for ter-pene biosynthesis in solanum. Plant Cell, 25, 2022–2036.
Martin, D.M., Gershenzon, J. and Bohlmann, J. (2003) Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage of Norway spruce. Plant Physiol., 132, 1586–1599.
Lee, D.H., Kim, M.H., Park, O.H., Park, KS., An, S.S., Seo, H.J., Jin, S.H., Jeong, W.S., Kang, Y.J., An, K.W. and Kim, E.S. (2013) A study on the distribution characteristics of terpene at the main trails of Mt. Mudeung. J. Environ. Health Sci., 39, 211–222.
Rufino, A.T., Ribeiro, M., Judas, F., Salgueiro, L., Lopes, M.C., Cavaleiro, C. and Mendes, A.F. (2014) Anti-inflammatory and chondroprotective activity of (+)-α-pinene: structural and enantiomeric selectivity. J. Nat. Prod., 77, 264–269.
Ma, J., Xu, H., Wu, J., Qu, C., Sun, F. and Xu, S. (2015) Linalool inhibits cigarette smoke-induced lung inflammation by inhibiting NF-κB activation. Int. Immunopharmacol., 29, 708–713.
Rodrigues, K.A., Amorim, L.V., Dias, C.N., Moraes, D.F.C., Carneiro, S.M. and Carvalho, F.A. (2015) Syzygium cumini (L.) Skeels essential oil and its major constituent α-pinene exhibit anti-Leishmania activity through immunomodulation in vitro. J. Ethnopharmacol., 160, 32–40.
Li, X.J., Yang, Y.J., Li, Y.S., Zhang, W.K. and Tang, H.B. (2016) α-Pinene, linalool and 1-octanol contribute to the topical anti-inflammatory and analgesic activities of frankincense by inhibiting COX-2. J. Ethnopharmacol., 179, 22–26.
Yu, P.J., Wan, L.M., Wan, S.H., Chen, W.Y., Xie, H., Meng, D.M., Zhang, J.J. and Xiao, X.L. (2016) Standardized myrtol attenuates lipopolysaccharide induced acute lung injury in mice. Pharm. Biol., 54, 3211–3216.
Kim, D.S., Lee, H.J., Jeon, Y.D., Han, Y.H., Kee, J.Y., Kim, H.J., Shin, H.J., Kang, J., Lee, B.S., Kim, S.H., Kim, S.J., Park, S.H., Choi, B.M., Park, S.J., Um, J.Y. and Hong, S.H. (2015) Alpha-pinene exhibits anti-inflammatory activity through the suppression of MAPKs and the NF-κB pathway in mouse peritoneal macrophages. Am. J. Chin. Med., 43, 731–742.
Nam, S.Y., Chung, C.k., Seo, J.H., Rah, S.Y., Kim, H.M. and Jeong, H.J. (2014) The therapeutic efficacy of α-pinene in an experimental mouse model of allergic rhinitis. Int. Immuno-pharmacol., 23, 273–282.
Hansen, J.S., Nørgaard, A.W., Koponen, I.K., Sørli, J.B., Paidi, M.D., Hansen, S.W., Clausen, P.A., Nielsen, G.D., Wolkoff, P. and Larsen, S.T. (2016) Limonene and its ozone-initiated reaction products attenuate allergic lung inflammation in mice. J. Immunotoxicol., 13, 793–803.
Amorim, J.L., Simas, D.L.R., Pinheiro, M.M., Moreno, D.S., Alviano, C.S., da Silva, A.J. and Fernandes, P.D. (2016) Anti-inflammatory properties and chemical characterization of the essential oils of four citrus species. PLoS ONE, 11, e0153643.
Rufino, A.T., Ribeiro, M., Sousa, C., Judas, F., Salgueiro, L., Cavaleiro, C. and Mendes, A.F. (2015) Evaluation of the anti-inflammatory, anti-catabolic and pro-anabolic effects of E-caryophyllene, myrcene and limonene in a cell model of osteoarthritis. Eur. J. Pharmacol., 750, 141–150.
Rehman, M.U., Tahir, M., Khan, A.Q., Khan, R., Oday-O-Hamiza, Lateef, A., Hassan, S.K., Rashid, S., Ali, N., Zee-shan, M. and Sultana, S. (2014) D-limonene suppresses doxorubicin-induced oxidative stress and inflammation via repression of COX-2, iNOS and NFκB in kidneys of Wistar rats. Exp. Biol. Med. (Maywood), 239, 465–476.
Games, E., Guerreiro, M., Santana, F.R., Pinheiro, N.M., de Oliveira, E.A., Lopes, F.D., Olivo, C.R., Tibério, I.F., Martins, M.A., Lago, J.H. and Prado, C.M. (2016) Structurally related monoterpenes p-Cymene, carvacrol and thymol isolated from essential oil from leaves of lippia sidoides cham. (Verbenaceae) protect mice against elastase-induced emphysema. Molecules, 21, E1390.
Chen, L., Zhao, L., Zhang, C. and Lan, Z. (2014) Protective effect of p-cymene on lipopolysaccharide-induced acute lung injury in mice. Inflammation, 37, 358–364.
Xie, G., Chen, N., Soromou, L.W., Liu, F., Xiong, Y., Wu, Q., Li, H., Feng, H. and Liu, G. (2012) p-Cymene protects mice against lipopolysaccharide-induced acute lung injury by inhibiting inflammatory cell activation. Molecules, 17, 8159–8173.
Zhong, W., Chi, G., Jiang, L., Soromou, L.W., Chen, N., Huo, M., Guo, W., Deng, X. and Feng, H. (2013) p-Cymene modulates in vitro and in vivo cytokine production by inhibiting MAPK and NF-κB activation. Inflammation, 36, 529–537.
Huo, M., Cui, X., Xue, J., Chi, G., Gao, R., Deng, X., Guan, S., Wei, J., Soromou, L.W., Feng, H. and Wang, D. (2013) Anti-inflammatory effects of linalool in RAW 264.7 macrophages and lipopolysaccharide-induced lung injury model. J. Surg. Res., 180, e47–e54.
Li, Y., Lv, O., Zhou, F., Li, Q., Wu, Z. and Zheng, Y. (2015) Linalool inhibits LPS-induced inflammation in BV2 microglia cells by activating Nrf2. Neurochem. Res., 40, 1520–1525.
de Oliveira Ramalho, T.R., de Oliveira, M.T., de Araujo Lima, A.L., Bezerra-Santos, C.R. and Piuvezam, M.R. (2015) Gamma-terpinene modulates acute inflammatory response in mice. Planta Med., 81, 1248–1254.
Hua, K.F., Yang, T.J., Chiu, H.W. and Ho, C.L. (2014) Essential oil from leaves of Liquidambar formosana ameliorates inflammatory response in lipopolysaccharide-activated mouse macrophages. Nat. Prod. Commun., 9, 869–872.
Kim, K.N., Ko, Y.J., Yang, H.M., Ham, Y.M., Roh, S.W., Jeon, Y.J., Ahn, G., Kang, M.C., Yoon, W.J., Kim, D. and Oda, T. (2013) Anti-inflammatory effect of essential oil and its constituents from fingered citron (Citrus medica L. var. sarcodac-tylis) through blocking JNK, ERK and NF-κB signaling pathways in LPS-activated RAW 264.7 cells. Food Chem. Toxicol., 57, 126–131.
Kim, M.J., Yang, K.W., Kim, S.S., Park, S.M., Park, K.J., Kim, K.S., Choi, Y.H., Cho, K.K. and Hyun, C.G. (2014) Chemical composition and anti-inflammation activity of essential oils from Citrus unshiu flower. Nat. Prod. Commun., 9, 727–730.
Zhong, W., Cui, Y., Yu, Q., Xie, X., Liu, Y., Wei, M., Ci, X. and Peng, L. (2014) Modulation of LPS-stimulated pulmonary inflammation by borneol in murine acute lung injury model. Inflammation, 37, 1148–1157.
Jiang, J., Shen, Y.Y., Li, J., Lin, Y.H., Luo, C.X. and Zhu, D.Y. (2015) (+)-Borneol alleviates mechanical hyperalgesia in models of chronic inflammatory and neuropathic pain in mice. Eur. J. Pharmacol., 757, 53–58.
Almeida, J.R., Souza, G.R., Silva, J.C., Saraiva, S.R., Júnior, R.G., Quintans Jde, S., Barreto Rde, S., Bonjardim, L.R., Cavalcanti, S.C. and Quintans, L.J., Jr. (2013) Borneol, a bicyclic monoterpene alcohol, reduces nociceptive behavior and inflammatory response in mice. Scientific World Journal, 2013, 808460
Sherkheli, M.A., Schreiner, B., Haq, R., Werner, M. and Hatt, H. (2015) Borneol inhibits TRPA1, a proinflammatory and noxious pain-sensing cation channel. Pak. J. Pharm. Sci., 28, 1357–1363.
Ojha, S., Javed, H., Azimullah, S. and Haque, M.E. (2016) β-Caryophyllene, a phytocannabinoid attenuates oxidative stress, neuroinflammation, glial activation and salvages dopaminergic neurons in a rat model of Parkinson disease. Mol. Cell. Biochem., 418, 59–70.
Varga, Z.V., Matyas, C., Erdelyi, K., Cinar, R., Nieri, D., Chicca, A., Nemeth, B.T., Paloczi, J., Lajtos, T., Corey, L., Hasko, G., Gao, B., Kunos, G., Gertsch, J. and Pacher, P. (2017) Beta-caryophyllene protects against alcoholic steatohepatitis by attenuating inflammation and metabolic dysregulation in mice. Br. J. Pharmacol. [Epub ahead of print].
Basha, R.H. and Sankaranarayanan, C. (2016) β-Caryophyllene, a natural sesquiterpene lactone attenuates hyperglycemia mediated oxidative and inflammatory stress in experimental diabetic rats. Chem. Biol. Interact., 245, 50–58.
Cho, H.I., Hong, J.M., Choi, J.W., Choi, H.S., Kwak, J.H., Lee, D.U., Lee, S.K. and Lee, S.M. (2015) β-Caryophyllene alleviates d-galactosamine and lipopolysaccharide-induced hepatic injury through suppression of the TLR4 and RAGE signaling pathways. Eur. J. Pharmacol., 764, 613–621.
Kim, M.J., Yang, K.W., Kim, S.S., Park, S.M., Park, K.J., Kim, K.S., Choi, Y.H., Cho, K.K., Lee, N.H. and Hyun, C.G. (2013) Chemical composition and anti-inflammatory effects of essential oil from Hallabong flower. EXCLI J., 12, 933–942.
Chaiyana, W., Anuchapreeda, S., Leelapornpisid, P., Phong-pradist, R., Viernstein, H. and Mueller, M. (2016) Development of microemulsion delivery system of essential oil from Zingiber cassumunar Roxb. Rhizome for improvement of stability and anti-inflammatory activity. AAPS PharmSciTech, 1–11.
Yang, H., Zhao, R., Chen, H., Jia, P., Bao, L. and Tang, H. (2014) Bornyl acetate has an anti-inflammatory effect in human chondrocytes via induction of IL-11. IUBMB Life, 66, 854–859.
Sobral, M.V., Xavier, A.L., Lima, T.C. and de Sousa, D.P. (2014) Antitumor activity of monoterpenes found in essential oils. ScientificWorldJournal, 2014, 953451.
Broitman, S.A., Wilkinson, J., 4th, Cerda, S. and Branch, S.K. (1996) Effects of monoterpenes and mevinolin on murine colon tumor CT-26 in vitro and its hepatic “Metastases” in vitro. Adv. Exp. Med. Biol., 401, 111–130.
Uedo, N., Tatsuta, M., Iishi, H., Baba, M., Sakai, N., Yano, H. and Otani, T. (1999) Inhibition by d-limonene of gastric carcinogenesis induced by N-methyl-N’-nitro-N-nitrosoguani-dine in Wistar rats. Cancer Lett., 137, 131–136.
Stratton, S., Dorr, R. and Alberts, D. (2000) The state-of-the-art in chemoprevention of skin cancer. Eur. J. Cancer, 36, 1292–1297.
Kaji, I., Tatsuta, M., Iishi, H., Baba, M., Inoue, A. and Kasugai, H. (2001) Inhibition by D-limonene of experimental hepato-carcinogenesis in Sprague-Dawley rats does not involve p21ras plasma membrane association. Int. J. Cancer, 93, 441–444.
Guyton, K.Z. and Kensler, T.W. (2002) Prevention of liver cancer. Curr. Oncol. Rep., 4, 464–470.
Lu, X.G., Zhan, L.B., Feng, B.A., Qu, M.Y., Yu, L.H. and Xie, J.H. (2004) Inhibition of growth and metastasis of human gastric cancer implanted in nude mice by d-limonene. World J. Gastroenterol., 10, 2140–2144.
Ji, J., Zhang, L., Wu, Y.Y., Zhu, X.Y., Lv, S.Q. and Sun, X.Z. (2006) Induction of apoptosis by d-limonene is mediated by a caspase-dependent mitochondrial death pathway in human leukemia cells. Leuk. Lymphoma, 47, 2617–2624.
Jia, S.S., Xi, G.P., Zhang, M., Chen, Y.B., Lei, B., Dong, X.S. and Yang, Y.M. (2013) Induction of apoptosis by D-limonene is mediated by inactivation of Akt in LS174T human colon cancer cells. Oncol. Rep., 29, 349–354.
Li, Q. (2010) Effect of forest bathing trips on human immune function. Environ. Health Prev. Med., 15, 9–17.
Bansal, A., Moriarity, D.M., Takaku, S. and Setzer, W.N. (2007) Chemical composition and cytotoxic activity of the leaf essential oil of Ocotea tonduzii from Monteverde, Costa Rica. Nat. Prod. Commun., 2, 781–784.
Matsuo, A.L., Figueiredo, C.R., Arruda, D.C., Pereira, F.V., Scutti, J.A., Massaoka, M.H., Travassos, L.R., Sartorelli, P. and Lago, J.H. (2011) α-Pinene isolated from Schinus terebin-thifolius Raddi (Anacardiaceae) induces apoptosis and confers antimetastatic protection in a melanoma model. Biochem. Biophys. Res. Commun., 411, 449–454.
Chen, W., Liu, Y., Li, M., Mao, J., Zhang, L., Huang, R., Jin, X. and Ye, L. (2015) Anti-tumor effect of α-pinene on human hepatoma cell lines through inducing G2/M cell cycle arrest. J. Pharmacol. Sci., 127, 332–338.
Jin, K.S., Bak, M.J., Jun, M., Lim, H.J., Jo, W.K. and Jeong, W.S. (2010) α-Pinene triggers oxidative stress and related signaling pathways in A549 and HepG2 cells. Food Sci. Biotechnol., 19, 1325–1332.
Kusuhara, M., Urakami, K., Masuda, Y., Zangiacomi, V., Ishii, H., Tai, S., Maruyama, K. and Yamaguchi, K. (2012) Fragrant environment with α-pinene decreases tumor growth in mice. Biomed. Res., 33, 57–61.
Bakarnga-Via, I., Hzounda, J.B., Fokou, P.V.T., Tchokouaha, L.R.Y., Gary-Bobo, M., Gallud, A., Garcia, M., Walbadet, L., Secka, Y., Dongmo, P.M.J., Boyom, F.F. and Menut, C. (2014) Composition and cytotoxic activity of essential oils from Xylopia aethiopica (Dunal) A. Rich, Xylopia parviflora (A. Rich) Benth. and Monodora myristica (Gaertn) growing in chad and cameroon. BMC Complement. Altern. Med., 14, 125.
Li, Y.L., Yeung, C.M., Chiu, L., Cen, Y.Z. and Ooi, V.E. (2009) Chemical composition and antiproliferative activity of essential oil from the leaves of a medicinal herb, Schefflera heptaphylla. Phytother. Res., 23, 140–142.
Meadows, S.M., Mulkerin, D., Berlin, J., Bailey, H., Kolesar, J., Warren, D. and Thomas, J.P. (2002) Phase II trial of perillyl alcohol in patients with metastatic colorectal cancer. Int. J. Gastrointest. Cancer, 32, 125–128.
Chen, T.C., Cho, H.Y., Wang, W., Wetzel, S.J., Singh, A., Nguyen, J., Hofman, F.M. and Schönthal, A.H. (2015) Chemotherapeutic effect of a novel temozolomide analog on nasopharyngeal carcinoma in vitro and in vivo. J. Biomed. Sci., 22, 71.
Bardon, S., Foussard, V., Fournel, S. and Loubat, A. (2002) Monoterpenes inhibit proliferation of human colon cancer cells by modulating cell cycle-related protein expression. Cancer Lett., 181, 187–194.
Yeruva, L., Pierre, K.J., Elegbede, A., Wang, R.C. and Carper, S.W. (2007) Perillyl alcohol and perillic acid induced cell cycle arrest and apoptosis in non small cell lung cancer cells. Cancer Lett., 257, 216–226.
Ferraz, R.P., Bomfim, D.S., Carvalho, N.C., Soares, M.B., da Silva, T.B., Machado, W.J., Prata, A.P.N., Costa, E.V., Moraes, V.R.S., Nogueira, P.C.L. and Bezerra, D.P. (2013) Cytotoxic effect of leaf essential oil of Lippia gracilis Schauer (Verbenaceae). Phytomedicine, 20, 615–621.
Li, J., Liu, C. and Sato, T. (2016) Novel antitumor invasive actions of p-Cymene by decreasing MMP-9/TIMP-1 expression ratio in human fibrosarcoma HT-1080 cells. Biol. Pharm. Bull., 39, 1247–1253.
Saleh, M., Hashem, F. and Glombitza, K. (1998) Cytotoxicity and in vitro effects on human cancer cell lines of volatiles of Apium graveolens var filicinum. Pharm. Pharmacol. Lett., 8, 97–99.
Silva, S.L.d., Figueiredo, P.M. and Yano, T. (2007) Cytotoxic evaluation of essential oil from Zanthoxylum rhoifolium Lam. leaves. Acta Amaz., 37, 281–286.
Maggi, F., Fortuné Randriana, R., Rasoanaivo, P., Nicoletti, M., Quassinti, L., Bramucci, M., Lupidi, G., Petrelli, D., Vitali, L.A., Papa, F. and Vittori, S. (2013) Chemical composition and in vitro biological activities of the essential oil of Vepris macrophylla (Baker) I. Verd. endemic to Madagascar. Chem. Biodivers., 10, 356–366.
Kuo, Y.H., Kuo, Y.J., Yu, A.S., Wu, M.D., Ong, C.W., Kuo, L.M.Y., Huang, J.T., Chen, C.F. and Li, S.Y. (2003) Two novel sesquiterpene lactones, cytotoxic vernolide-A and-B, from Vernonia cinerea. Chem. Pharm. Bull., 51, 425–426.
Dahham, S.S., Tabana, Y.M., Iqbal, M.A., Ahamed, M.B., Ezzat, M.O., Majid, A.S. and Majid, A.M. (2015) The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Molecules, 20, 11808–11829.
Jung, J.I., Kim, E.J., Kwon, G.T., Jung, Y.J., Park, T., Kim, Y., Yu , R., Choi, M.S., Chun, H.S., Kwon, S.H., Her, S., Lee, K.W. and Park, J.H. (2015) β-Caryophyllene potently inhibits solid tumor growth and lymph node metastasis of B16F10 melanoma cells in high-fat diet-induced obese C57BL/6N mice. Carcinogenesis, 36, 1028–1039.
Sarvmeili, N., Jafarian-Dehkordi, A. and Zolfaghari, B. (2016) Cytotoxic effects of Pinus eldarica essential oil and extracts on HeLa and MCF-7 cell lines. Res. Pharm. Sci., 11, 476–483.
Legault, J. and Pichette, A. (2007) Potentiating effect of β-caryophyllene on anticancer activity of α-humulene, isocaryo-phyllene and paclitaxel. J. Pharm. Pharmacol., 59, 1643–1647.
Lesgards, J.F., Baldovini, N., Vidal, N. and Pietri, S. (2014) Anticancer activities of essential oils constituents and synergy with conventional therapies: a review. Phytother. Res., 28, 1423–1446.
Savelev, S.U., Okello, E.J. and Perry, E.K. (2004) Butyryl-and acetyl-cholinesterase inhibitory activities in essential oils of Sal-via species and their constituents. Phytother. Res., 18, 315–324.
Liu, Z.B., Niu, W.M., Yang, X.H., Yuan, W. and Wang, W.G. (2010) Study on perfume stimulating olfaction with volatile oil of Acorus gramineus for treatment of the Alzheimer’s disease rat. J. Tradit. Chin. Med., 30, 283–287.
Majlessi, N., Choopani, S., Kamalinejad, M. and Azizi, Z. (2012) Amelioration of amyloid β-induced cognitive deficits by Zataria multiflora Boiss. essential oil in a rat model of Alzheimer’s disease. CNS Neurosci. Ther., 18, 295–301.
Cioanca, O., Hritcu, L., Mihasan, M., Trifan, A. and Hancianu, M. (2014) Inhalation of coriander volatile oil increased anxio-lytic-antidepressant-like behaviors and decreased oxidative status in beta-amyloid (1-42) rat model of Alzheimer’s disease. Physiol. Behav., 131, 68–74.
Oboh, G., Olasehinde, T.A. and Ademosun, A.O. (2014) Essential oil from lemon peels inhibit key enzymes linked to neurodegenerative conditions and pro-oxidant induced lipid peroxidation. J. Oleo Sci., 63, 373–381.
Abuhamdah, S., Abuhamdah, R., Howes, M.J., Al-Olimat, S., Ennaceur, A. and Chazot, P.L. (2015) Pharmacological and neuroprotective profile of an essential oil derived from leaves of Aloysia citrodora Palau. J. Pharm. Pharmacol., 67, 1306–1315.
Ayaz, M., Junaid, M., Ullah, F., Sadiq, A., Khan, M.A., Ahmad, W., Shah, M.R., Imran, M. and Ahmad, S. (2015) Comparative chemical profiling, cholinesterase inhibitions and anti-radicals properties of essential oils from Polygonum hydropiper L: A Preliminary anti-Alzheimer’s study. Lipids Health Dis., 14, 141.
Klein-Júnior, L.C., dos Santos Passos, C., Tasso de Souza, T.J., Gobbi de Bitencourt, F., Salton, J., de Loreto Bordignon, S.A. and Henriques, A.T. (2016) The monoamine oxidase inhibitory activity of essential oils obtained from Eryngium species and their chemical composition. Pharm. Biol., 54, 1071–1076.
Mühlbauer, R., Lozano, A., Palacio, S., Reinli, A. and Felix, R. (2003) Common herbs, essential oils and monoterpenes potently modulate bone metabolism. Bone, 32, 372–380.
Koo, B.S., Lee, S.I., Ha, J.H. and Lee, D.U. (2004) Inhibitory effects of the essential oil from SuHeXiang Wan on the central nervous system after inhalation. Biol. Pharm. Bull., 27, 515–519.
Lima, B., López, S., Luna, L., Agüero, M.B., Aragón, L., Tapia, A., Zacchino, S., López, M.L., Zygadlo, J. and Feresin, G.E. (2011) Essential oils of medicinal plants from the central andes of Argentina: chemical composition, and antifungal, antibacterial, and insect-repellent activities. Chem. Biodivers., 8, 924–936.
El-Seedi, H.R., Khalil, N.S., Azeem, M., Taher, E.A., Göransson, U., Pålsson, K. and Borg-Karlson, A.K. (2012) Chemical composition and repellency of essential oils from four medicinal plants against Ixodes ricinus nymphs (Acari: Ixodidae). J. Med. Entomol., 49, 1067–1075.
Mkaddem, M., Bouajila, J., Ennajar, M., Lebrihi, A., Mathieu, F. and Romdhane, M. (2009) Chemical composition and antimicrobial and antioxidant activities of Mentha (longifolia L. and viridis) essential oils. J. Food Sci., 74, M358–M363.
Hong, Y.K., Park, S.H., Lee, S., Hwang, S., Lee, M.J., Kim, D., Lee, J.H., Han, S.Y., Kim, S.T., Kim, Y.K., Jeon, S., Koo, B.S. and Cho, K.S. (2011) Neuroprotective effect of SuHeXiang Wan in Drosophila models of Alzheimer’s disease. J. Ethnopharmacol., 134, 1028–1032.
Park, S.H., Lee, S., Hong, Y.K., Hwang, S., Lee, J.H., Bang, S.M., Kim, Y.K., Koo, B.S., Lee, I.S. and Cho, K.S. (2013) Suppressive effects of SuHeXiang Wan on amyloid-β42-induced extracellular signal-regulated kinase hyperactivation and glial cell proliferation in a transgenic Drosophila model of Alzheimer’s disease. Biol. Pharm. Bull., 36, 390–398.
Liu, Q.F., Jeong, H., Lee, J.H., Hong, Y.K., Oh, Y., Kim, Y.M., Suh, Y.S., Bang, S., Yun, H.S., Lee, K., Cho, S.M., Lee, S.B., Jeon, S. Chin, Y.W., Koo, B.S. and Cho, K.S. (2016) Coriandrum sativum suppresses Aβ42-induced ROS increases, glial cell proliferation and ERK activation. Am. J. Chin. Med., 44, 1325–1347.
Liu, Q.F., Lee, J.H., Kim, Y.M., Lee, S., Hong, Y.K., Hwang, S., Oh, Y., Lee, K., Yun, H.S., Lee, I.S., Jeon, S., Chin, Y.W., Koo, B.S. and Cho, K.S. (2015) In vivo screening of traditional medicinal plants for neuroprotective activity against Aß42 cytotoxicity by using Drosophila models of Alzheimer’s disease. Biol. Pharm. Bull, 38, 1891–1901.
Hur, J., Pak, S.C., Koo, B.S. and Jeon, S. (2013) Borneol alleviates oxidative stress via upregulation of Nrf2 and Bcl-2 in SH-SY5Y cells. Pharm. Biol, 51, 30–35.
Tian, L.L., Zhou, Z., Zhang, Q., Sun, Y.N., Li, C.R., Cheng, C, Zhong, Z.Y and Wang, S.Q. (2007) Protective effect of (±) isoborneol against 6-OHDA-induced apoptosis in SH-SY5Y cells. Cell. Physiol. Biochem., 20, 1019–1032.
Han, M., Liu, Y, Zhang, B., Qiao, J., Lu, W., Zhu, Y, Wang, Y and Zhao, C. (2011) Salvianic borneol ester reduces ß-amyloid oligomers and prevents cytotoxicity. Pharm. Biol, 49, 1008–1013.
Calleja, M.A., Vieites, J.M., Montero-Meterdez, T., Torres, M.I., Faus, M.J., Gil, A. and Suárez, A. (2013) The antioxidant effect of ß-caryophyllene protects rat liver from carbon tetrachloride-induced fibrosis by inhibiting hepatic stellate cell activation. Br. J. Nutr, 109, 394–401.
Sharma, C, Al Kaabi, J.M., Nurulain, S.M., Goyal, S.N., Kamal, M.A. and Ojha, S. (2016) Polypharmacological properties and therapeutic potential of ß-caryophyllene: a dietary phytocannabinoid of pharmaceutical promise. Curr Pharm. Des., 22, 3237–3264.
Cheng, Y, Dong, Z. and Liu, S. (2014) ß-Caryophyllene ameliorates the Alzheimer-like phenotype in APP/PS1 mice through CB2 receptor activation and the PPARy pathway. Pharmacology, 94, 1–12.
Porres-Martínez, M., González-Burgos, E., Carretero, M.E. and Gómez-Serranillos, M.P. (2016) In vitro neuroprotective potential of the monoterpenes a-pinene and 1,8-cineole against H2O2-induced oxidative stress in PC12 cells. Z Naturforsch., C. J. Biosci., 71, 191–199.
Sammi, S.R., Trivedi, S., Rath, S.K., Nagar, A., Tandon, S., Kalra, A. and Pandey, R. (2016) 1-Methyl-4-propan-2-ylben-zene from Thymus vulgaris Attenuates Cholinergic Dysfunction. Mol. Neurobiol. [Epub ahead of print].
Lee, Y. (2016) Cytotoxicity evaluation of essential oil and its component from zingiber officinale roscoe. Toxicol. Res., 32, 225–230.
Bakkali, F., Averbeck, S., Averbeck, D. and Idaomar, M. (2008) Biological effects of essential oils-a review. Food Chem. Toxicol, 46, 446–475.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://doi.org/creativecommons.org/licenses/by/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Cho, K.S., Lim, Yr., Lee, K. et al. Terpenes from Forests and Human Health. Toxicol Res. 33, 97–106 (2017). https://doi.org/10.5487/TR.2017.33.2.097
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.5487/TR.2017.33.2.097
Key words
- Cancer
- Forest therapy
- Health
- Immune function
- Neuronal health
- Terpene