Skip to main content

Advertisement

Log in

Osseous integration in porous tantalum implants

  • Review Article
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

Porous tantalum is a biomaterial that was recently introduced in orthopedics in order to overcome problems related to implant loosening. It is found to have osteoconductive, and possibly, osteoinductive properties hence useful in difficult cases with severe bone defects. So, it is of great interest to shed light on the mechanisms through which this material leads to new bone formation, after being implanted. Porous tantalum is biologically relatively inert, with restricted bonding capacity to the bone is restricted. In order to overcome this obstacle, it undergoes thermal processing in an alkaline environment. This process leads to extensive hydroxyapatite formation on its surface, and thus, to better integration of porous tantalum implants. Apart from this, new bone tissue formation occurs inside the pores of the porous tantalum after its implantation and this new bone retains the characteristics of the normal bone, that is, bone remodeling and Haversian systems formation. This finding is enhanced by the observation that porous tantalum is an appropriate substrate for osteoblast adherence, proliferation, and differentiation. Furthermore, the finding that osteoblasts derived from old women (> 60 years old) and cultivated on porous tantalum may grow faster than osteoblasts taken from younger women (< 45 years old) and cultivated on other substrates, can partially explain porous tantalum’s good performance in cases of patients with severe bone defects. In conclusion, porous tantalum’s chemical and mechanical properties are those that probably define the already noticed good performance of this material. However, further research is needed to totally clarify the mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levine BR. A new era in porous metals: Applications in orthopedics. Adv Eng Mater 2008;10:788–92.

    Article  CAS  Google Scholar 

  2. Bobyn JD, Stackpool GJ, Hacking SA, Tanzer M, Krygier JJ. Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. J Bone Joint Surg Br 1999;81B:907–14.

    Article  Google Scholar 

  3. Zardiackas LD, Parsell DE, Dillon LD, Mitchell DW, Nunnery LA, Poggie R. Structure, metallurgy, and mechanical properties of a porous tantalum foam. J Biomed Mater Res 2001;58:180–7.

    Article  CAS  PubMed  Google Scholar 

  4. Miyazaki T, Kim HM, Kokubo T, Ohtsuki C, Kato H, Nakamura T. Mechanism of bonelike apatite formation on bioactive tantalum metal in a simulated body fluid. Biomaterials 2002;23:827–32.

    Article  CAS  Google Scholar 

  5. Kokubo T, Kim HM, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials 2003;24:2161–75.

    Article  CAS  PubMed  Google Scholar 

  6. Levine BR, Sporer S, Poggie RA, Della Valle CJ, Jacobs JJ. Experimental and clinical performance of porous tantalum in orthopedic surgery. Biomaterials 2006;27:4671–81.

    Article  CAS  PubMed  Google Scholar 

  7. Shimko DA, Shimko VF, Sander EA, Dickson KF, Nauman EA. Effect of porosity on the fluid flow characteristics and mechanical properties of tantalum scaffolds. J Biomed Mater Res B Appl Biomater 2005;73:315–24.

    Article  PubMed  CAS  Google Scholar 

  8. Cohen R. A porous tantalum trabecular metal: Basic science. Am J Orthop (Belle Mead NJ) 2002;31:216.

    Google Scholar 

  9. Zhang Y, Ahn PB, Fitzpatrick DC, Heiner AD, Poggie RA, Brown TD. Interfacial frictional behavior: Cancellous bone, cortical bone, and a novel porous tantalum biomaterial. J Musculoskeletal Res 1999;3:245–51.

    Article  Google Scholar 

  10. Kotani S, Fujita Y, Kitsugi T, Nakamoura T, Yamamuro T, Ohtsuki C, et al. Bone bonding mechanism of β-tricalcium phosphate. J Biomed Mater Res 1991;25:1303–15.

    Article  CAS  PubMed  Google Scholar 

  11. Kitsugi T, Nakamura T, Oka M, Senaha Y, Goto T, Shibuya T. Bone-bonding behavior of plasma-sprayed coatings of Bioglass, AW-glass ceramic, and tricalcium phosphate on titanium alloy. J Biomed Mater Res 1996;30:261–9.

    Article  CAS  PubMed  Google Scholar 

  12. Geesink RG, Hoefnagels NH. Six-year results of hydroxyapatitecoated total hip replacement. J Bone Joint Surg Br 1995;77:534–47.

    Article  CAS  PubMed  Google Scholar 

  13. Miyazaki T, Kim HM, Miyaji F, Kokubo T, Kato H, Nakamura T. Bioactive tantalum metal prepared by NaOH treatment. J Biomed Mater Res 2000;50:35–42.

    Article  CAS  PubMed  Google Scholar 

  14. Kato H, Nakamura T, Nishiguchi S, Matsusue Y, Kobayashi M, Miyazaki T, et al. Bonding of alkali-and heat-treated tantalum implants to bone. J Biomed Mater Res 2000;53:28–35.

    Article  CAS  PubMed  Google Scholar 

  15. Kokubo T. Metallic materials stimulating bone formation. Med J Malaysia 2004;59(Suppl B):91–2.

    Google Scholar 

  16. Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic. J Biomed Mater Res 1990;24:721–34.

    Article  CAS  PubMed  Google Scholar 

  17. Kim HM, Miyaji F, Kokubo T, Kitsugi T, Nakamura T. Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J Biomed Mater Res 1996;32:409–17.

    Article  CAS  PubMed  Google Scholar 

  18. Ohtsuki C, Kokubo T, Yamamuro T. Mechanism of apatite formation on CaO-SiO2-P2O5 glasses in a simulated body fluid. J Non-Cryst Solids 1992;143:84–92.

    Article  CAS  Google Scholar 

  19. Takadama H, Kim HM, Miyaji F, Kokubo T, Nakamura T. Mechanism of apatite formation induced by silanol groups. J Ceram Soc Japan 2000;108:118–21.

    Article  CAS  Google Scholar 

  20. Nishiquchi S, Kato H, Neo M, Oka M, Kim HM, Kokubo T, et al. Alkali-and heat-treated porous titanium for orthopedic implants. J Biomed Mater Res 2011;54:198–208.

    Article  Google Scholar 

  21. Parks GA. The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxy complex systems. Chem Rev 1965;65:177–98.

    Article  CAS  Google Scholar 

  22. Li P, Ohtsuki C, Kokubo T, Nakanishi K, Soga N, de Groot K. The role of hydrated silica, titania and alumina in inducing apatite on implants. J Biomed Mater Res 1994;28:7–15.

    Article  CAS  PubMed  Google Scholar 

  23. Kosmulski M. Attempt to determine pristine points of zero charge of Nb2O5, Ta2O5, and HfO2. Langmuir 1997;13:6315–20.

    Article  CAS  Google Scholar 

  24. Barrere F, van der Valk CM, Meijer G, Dalmeijer RA, de Groot K, Layrolle P. Osteointegration of biomimetic apatite coating applied onto dense and porous metal implants in femurs of goats. J Biomed Mater Res 2003;67B:655–65.

    Article  CAS  Google Scholar 

  25. Barrere F, van der Valk CM, Dalmeijer RA, Meijer G, van Blitterswijk CA, de Groot K, et al. Osteogenecity of octacalcium phosphate coatings applied on porous metal implants. J Biomed Mater Res 2003;66A:779–88.

    Article  CAS  Google Scholar 

  26. Yuan H, Zou P, Yang Z, Zhang X, de Bruijn JD, de Groot K. Bone morphogenetic protein and ceramic-induced osteogenesis. J Mater Sci Mater Med 1998;9:717–21.

    Article  CAS  PubMed  Google Scholar 

  27. Yuan H. Osteoinduction by calcium phosphates [PhD thesis]. The Netherlands: Leiden University; 2001.

    Google Scholar 

  28. Ripamonti U. Osteoinduction in porous hydroxyapatite implanted in ectopic sites of different animal models. Biomaterials 1996;17:31–5.

    Article  CAS  PubMed  Google Scholar 

  29. Bobyn JD, Pillar RM, Cameron HU, Weatherly GC. The optimum pore size for the fixation of porous surfaced metal implants by the ingrowth of bone. Clin Orthop Relat Res 1980;I50:263–70.

    Google Scholar 

  30. Bobyn JD, Toh KK, Hacking SA, Tanzer M, Krygier JJ. Tissue response to porous tantalum acetabular cups: A canine model. J Arthroplasty 1999;14:347–54.

    Article  CAS  PubMed  Google Scholar 

  31. Pidhorz LE, Urban RM, Jacobs JJ, Sumner DR, Galante JO. A quantitative study of bone and soft tissues in cementless porous-coated acetabular components retrieved at autopsy. J Arthroplasty 1993;8:213–25.

    Article  CAS  PubMed  Google Scholar 

  32. Camron HU, Pilliar RM, Macnab I. The rate of bone ingrowth into porous metal. J Biomed Mater Res 1976;10:295–302.

    Article  Google Scholar 

  33. Jasty M, Bragdon CR, Haire T, Mulroy RD Jr, Harris WH. Comparison of bone ingrowth into cobalt chrome sphere and titanium fiber mesh porous coated cementless canine acetabular components. J Biomed Mater Res 1993;27:639–44.

    Article  CAS  PubMed  Google Scholar 

  34. Koutsostathis SD, Tsakotos GA, Papakostas I, Macheras GA. Biological process at bone porous tantalum interface. A review article. J Orthopedics 2009;6:e3.

    Google Scholar 

  35. D’Angelo F, Murena L, Campagnolo M, Zatti G, Cherubino P. Analysis of bone ingrowth on a tantalum cup. Indian J Orthop 2008;42:275–8.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Macheras GA, Papagelopoulos PJ, Kateros K, Kostakos AT, Baltas D, Karachalios TS. Radiological evaluation of the metalbone interface of a porous tantalum monoblock acetabular component. J Bone Joint Surg Br 2006;88:304–9.

    Article  CAS  PubMed  Google Scholar 

  37. Gruen TA, Poggie RA, Lewallen DG, Hanssen AD, Lewis RJ, O’Keefe TJ, et al. Radiographic evaluation of a monoblock acetabular component: A multicenter study with 2-to 5-year results. J Arthroplasty 2005;20:369–78.

    Article  PubMed  Google Scholar 

  38. Kostakos AT, Macheras GA, Frangakis CE, Stafilas KS, Baltas D, Xenakis TA. Migration of the trabecular metal monoblock acetabular cup system a 2-year followup using the Ein-Bild-Rontgen-Analyse method. J Arthroplasty 2010;25:35–40.

    Article  PubMed  Google Scholar 

  39. Malizos KN, Bargiotas K, Papatheodorou L, Hantes M, Karachalios T. Survivorship of monoblock trabecular metal cups in primary THA. Clin Orthop Relat Res 2008;466:159–66.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Macheras GA, Kateros K, Koutsostathis SD, Tsakotos G, Galanakos S, Papadakis SA. The trabecular metal monoblock acetabular component in patients with high congenital hip dislocation. A prospective study. J Bone Joint Surg Br 2010;92-B:624–8.

    Article  Google Scholar 

  41. Brunette DM, The Effects of implant surface topography on the behavior of cells. Int J Oral Maxillofac Implants 1988;3:231–46.

    CAS  PubMed  Google Scholar 

  42. Goldberg VM, Stevenson S, Feighan J, Davy D. Biology of Grit-Blasted Titanium Alloy Implants. Clin Orthop Relat Res 1995;319:122–9.

    Google Scholar 

  43. Hacking SA, Bobyn JD, Tanzer M, Krygier JJ. The osseous response to corundum blasted implant surfaces in a canine total hip arthroplasty model. Clin Orthop Relat Res 1999;364:240–53.

    Article  Google Scholar 

  44. Kieswetter K, Schwartz Z, Dean DD, Boyan BD. The role of implant surface characteristics in the healing of bone. Crit Rev Oral Biol Med 1996;7:329–45.

    Article  CAS  PubMed  Google Scholar 

  45. Findlay DM, Welldon K, Atkins GJ, Howie DW, Zannettino AC, Bobyn D. The proliferation and phenotypic expression of human osteoblasts on tantalum metal. Biomaterials 2004;25:2215–27.

    Article  CAS  PubMed  Google Scholar 

  46. Kieswetter K, Schwartz Z, Hummert TW, Cochran DL, Simpson J, Dean DD, et al. Surface roughness modulates the local production of growth factors and cytokines by osteo-blastlike MG-63 cells. J Biomed Mater Res 1996;32:55–63.

    Article  CAS  PubMed  Google Scholar 

  47. Bigerelle M, Anselme K, Noel B, Ruderman I, Hardouin P, Iost A. Improvement in the morphology of Ti-based surfaces: A new process to increase in vitro human osteoblast response. Biomaterials 2002;23:1563–77.

    Article  CAS  PubMed  Google Scholar 

  48. Keller JC. Tissue compatibility to different surfaces of dental implants: In vitro studies. Implant Dent 1998;7:331–7.

    Article  CAS  PubMed  Google Scholar 

  49. Schwartz Z, Lohmann CH, Sisk M, Cochran DL, Sylvia VL, Simpson J, et al. Local factor production by MG63 osteo-blastlike cells in response to surface roughness and 1,25-(OH)2D3 is mediated via protein kinase C-and protein kinase A-dependent pathways. Biomaterials 2001;22:731–41.

    Article  CAS  PubMed  Google Scholar 

  50. Welldon KJ, Atkins GJ, Howie DW, Findlay DM. Primary human osteoblasts grow into porous tantalum and maintain an osteoblastic phenotype. J Biomed Mater Res A 2008;84:691–701.

    Article  PubMed  CAS  Google Scholar 

  51. Gronthos S, Zannettino AC, Graves SE, Ohta S, Hay SJ, Simmons PJ. Differential cell surface expression of the STRO1 and alkaline phosphatase antigens on discrete developmental stages in primary cultures of human bone cells. J Bone Miner Res 1999;14:47–56.

    Article  CAS  PubMed  Google Scholar 

  52. Stein GS, Lian JB, Stein JL, Van Wijnen AJ, Montecino M. Transcriptional control of osteoblast growth and differentiation. Physiol Rev 1996;76:593–629.

    Article  CAS  PubMed  Google Scholar 

  53. Aubin, JE, Liu F, Malaval L, Gupta AK. Osteoblast and chondroblast differentiation. Bone 1995;17:S77–83.

    Article  Google Scholar 

  54. Justesen J, Lorentzen M, Andersen LK, Hansen O, Chevallier J, Modin C, et al. Spatial and temporal changes in the morphology of preosteoblastic cells seeded on microstructured tantalum surfaces. J Biomed Mater Res A 2009;89:885–94.

    Article  CAS  PubMed  Google Scholar 

  55. Dalby MJ, Riehle MO, Yarwood SJ, Wilkinson CD, Curtis AS. Nucleus alignment and cell signaling in fibroblasts: Response to a micro-grooved topography. Exp Cell Res 2003;284:274–82.

    Article  CAS  PubMed  Google Scholar 

  56. Rice JM, Hunt JA, Gallagher JA, Hanarp P, Sutherland DS, Gold J. Quantitative assessment of the response of primary derived human osteoblasts and macrophages to a range of nanotopography surfaces in a single culture model in vitro. Biomaterials 2003;24:4799–818.

    Article  CAS  PubMed  Google Scholar 

  57. Wojciak-Stothard B, Curtis A, Monaghan W, MacDonald K, Wilkinson C. Guidance and activation of murine macrophages by nanometric scale topography. Exp Cell Res 1996;223:426–35.

    Article  CAS  PubMed  Google Scholar 

  58. Nelson CL, Lonner JH, Lahiji A, Kim J, Lotke PA. Use of a trabecular metal patella for marked patella bone loss during revision total knee arthroplasty. J Arthroplasty 2003;18:17–41.

    Article  Google Scholar 

  59. Shuler MS, Rooks MD, Roberson JR. Porous tantalum implant in early osteonecrosis of the hip: Preliminary report on operative, survival, and outcomes results. J Arthroplasty 2007;22:26–31.

    Article  PubMed  Google Scholar 

  60. Rose PS, Halasy M, Trousdale RT, Hanssen AD, Sim FH, Berry DJ, et al. Preliminary results of tantalum acetabular components for THA after pelvic radiation. Clin Orthop Relat Res 2006;453:195–8.

    Article  PubMed  Google Scholar 

  61. Sagomonyants KB, Hakim-Zargar M, Jhaveri A, Aronow MS, Gronowicz G. Porous tantalum stimulates the proliferation and osteogenesis of osteoblasts from elderly female patients. J Orthop Res 2011;28:609–16.

    Article  Google Scholar 

  62. Zhou S, Greenberger JS, Epperly MW, Goff JP, Adler C, Leboff MS, et al. Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell 2008;7:335–43.

    Article  CAS  PubMed  Google Scholar 

  63. Anselme K, Bigerelle M. Topography effects of pure titanium substrates on human osteoblast longterm adhesion. Acta Biomater 2005;1:211–22.

    Article  CAS  PubMed  Google Scholar 

  64. Lincks J, Boyan BD, Blanchard CR, Lohmann CH, Liu Y, Cochran DL, et al. Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition. Biomaterials 1998;19:2219–32.

    Article  CAS  PubMed  Google Scholar 

  65. Gronowicz G, McCarthy M. Response of human osteoblasts to implant materials; Integrinmediated adhesion. J Orthop Res 1996;14:878–87.

    Article  CAS  PubMed  Google Scholar 

  66. Sinha R, Tuan R. Regulation of human osteoblast integrin expression by orthopedic implant materials. Bone 1996;18:451–7.

    Article  CAS  PubMed  Google Scholar 

  67. Frenkel SR, Jaffe WL, Dimaano F, Iesaka K, Hua T. Bone response to a novel highly porous surface in a canine implantable chamber. J Biomed Mater Res B Appl Biomater 2004;71:387–91.

    Article  PubMed  CAS  Google Scholar 

  68. Ramappa MA, Bajwa A, Kulkarni A, McMurtry I, Port A. Early results of a new highly porous modular acetabular cup in revision arthroplasty. Hip Int 2009;19:239–44.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos G. Paganias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paganias, C.G., Tsakotos, G.A., Koutsostathis, S.D. et al. Osseous integration in porous tantalum implants. IJOO 46, 505–513 (2012). https://doi.org/10.4103/0019-5413.101032

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.4103/0019-5413.101032

Key words

Navigation