Skip to main content
Log in

Non-scanning 2-D Laser Cutting of Polyimide by Using a Computer-Generated Hologram

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Laser processing is an effective way for precisely and accurately removing a small region of materials without tool wear. Conventional laser processing, which has a limitation on the processing speed, is performed by scanning a single spot on a target material. For improving its speed, a high-power laser beam can be spatially distributed using a hologram to simultaneously process a two-dimensional area. This technique has been used in experiments such as drilling, patterning, etc. However, as far as we know, due to several difficulties, no experiments have been reported that apply the holographic technique to non-scanning cutting with a single hologram. In this research, we experimentally performed non-scanning 2-D laser cutting of a polyimide film by using a single computer-generated hologram (CGH) and a high-power laser of 120 W. To do this, we designed a CGH to reconstruct twelve lines in a 24 mm × 23 mm area. This was then fabricated with fused silica so that it would not be damaged by the high-power laser. This method makes possible the achievement of a high throughput in a material cutting process by utilizing a high-power laser efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Belforte, “Industrial lasers continue solid revenue growth in 2016”. https://www.industriallasers.com/micromachining/article/16485081/industriallasers-continue-solid-revenue-growth-in-2016 (October 11, 2019).

    Google Scholar 

  2. Y. Hayasaki, T. Sugimoto, A. Takita and N. Nishida, Appl. Phys. Lett. 87, 031101 (2005).

    Article  ADS  Google Scholar 

  3. C. Wan. et al., Opt. Eng. 54, 16109 (2015).

    Article  Google Scholar 

  4. Z-Y. Zhan. et al., Appl. Phys. Lett. 109, 21109 (2016).

    Article  Google Scholar 

  5. P. Kunwa. et al., Opt. Mater. Express 6, 946 (2016).

    Article  ADS  Google Scholar 

  6. M-Q. Ca. et al., Opt. Lett. 41, 1474 (2016).

    Article  ADS  Google Scholar 

  7. M. Sakakur. et al., Opt. Express 18, 12136 (2010).

    Article  ADS  Google Scholar 

  8. J. P. Parry, R. J. Beck, J. D. Shephard and D. P. Hand, Appl. Opt. 50, 1779 (2011).

    Article  ADS  Google Scholar 

  9. Z. Kuan. et al., Opt. Lasers Eng. 70, 1 (2015).

    Article  Google Scholar 

  10. L. Yan. et al., Opt. Lasers Eng. 70, 26 (2015).

    Google Scholar 

  11. J. Amako, T. Shimoda and K. Umetsu, Proc. SPIE 5339, 475 (2004).

    Article  ADS  Google Scholar 

  12. J. J. J. Kaakkunen, P. Laakso and V. Kujanpää, J. Laser Appl. 26, 032008 (2014).

    Article  ADS  Google Scholar 

  13. C. Mauclai. et al., Opt. Lasers Eng. 67, 212 (2015).

    Article  Google Scholar 

  14. Technical Information, “LCOS-SLM X10468 series”. http://www.hamamatsu.com/sp/hpe/community/lcos/tech-note/LCOS-SLM-Tech-Info.pdf (October 11, 2019).

    Google Scholar 

  15. R. M. Wood, R. T. Taylor and R. L. Rouse, Opt. Laser Technol. 7, 105 (1975).

    Article  ADS  Google Scholar 

  16. Y. Deng and D. Chu, Sci. Rep. 7, 5893 (2017).

    Article  ADS  Google Scholar 

  17. B. C. Kress and P. Meyrueis. Applied Digital Optics: From Micro-Optics to Nanophotonics (John Wiley & Sons, Chichester, 2009).

    Book  Google Scholar 

  18. H. Lee, S. Cha, H. K. Ahn and H. J. Kong, Curr. Opt. Photonics 3, 451 (2019).

    Google Scholar 

  19. H. Lee, S. Park, B. G. Jeon and H. J. Kong, Appl. Phys. B 122, 192 (2016).

    Article  ADS  Google Scholar 

  20. J. Bengtsson, Appl. Opt. 33, 6879 (1994).

    Article  ADS  Google Scholar 

  21. M. T. Gale, M. Rossi, J. Pedersen and H. Schuetz, Opt. Eng. 33, 3556 (1994).

    Article  ADS  Google Scholar 

  22. J. Meijer, J. Mater. Process. Technol. 149, 2 (2004).

    Article  Google Scholar 

  23. M. D. Perr. et al., J. Appl. Phys. 85, 6803 (1999).

    Article  ADS  Google Scholar 

  24. S. Yılmaz, P. Elahi, H. Kalaycıoˇglu and F. Ö. Ilday, J. Opt. Soc. Am. B 32, 2462 (2015).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is sponsored by the Civil Military Technology Cooperation Center (CMTC) of Korea under contract 12-DU-EN-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwihyeong Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H., Ahn, H.K., Cha, S. et al. Non-scanning 2-D Laser Cutting of Polyimide by Using a Computer-Generated Hologram. J. Korean Phys. Soc. 76, 819–823 (2020). https://doi.org/10.3938/jkps.76.819

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.76.819

Keywords

Navigation