Skip to main content
Log in

Fabrication of Flexible, Highly Reproducible, and Hydrophobic Surface-enhanced Raman Scattering Substrates Through Silver-Nanoparticle Inkjet Printing

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

A Correction to this article was published on 01 June 2020

This article has been updated

Abstract

We demonstrate a flexible, low-cost, and highly reproducible hydrophobic surface-enhanced Raman scattering (SERS) substrate produced by inkjet printing silver nanoparticles (Ag NPs) on a commercial overhead projector (OHP) film. Unlike a conventional Raman substrate such as glass or a silicon wafer, the OHP film is flexible, is easy and safe to handle, and has extremely low fabrication cost. Furthermore, our inkjet printing method is suitable for large-area fabrication of well-defined functional nanostructures. The prepared SERS substrate is a nanoplasmonic material owing to the presence of Ag NPs with hydrophobic surfaces due to their being coated with stearic acid (SA). The SERS activities of the OHP@Ag and SA-coated OHP@Ag substrates were verified experimentally using rhodamine B (RhB) as an analyte. The Raman band intensities of RhB deposited on the OHP@Ag substrate suggested obvious enhancement compared with those of the OHP film without Ag NPs. The SA-coated OHP@Ag substrate showed two-fold signal enhancement compared to the hydrophilic OHP@Ag substrate because of the hydrophobic condensation effect. The SERS detection signal for RhB had a relative standard deviation of 4.4%, revealing the excellent repro-ducibility of the substrate. Thus, this cost-effective and hydrophobic SERS flexible substrate can be used widely in SERS-based detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 01 July 2020

    The first author’s name should be changed from “BongJun KIM” to “Bongjoon KIM”.

References

  1. G. B. Jung et al., Biomed. Opt. Express 9, 345244 (2018).

    Article  Google Scholar 

  2. Z. W. Zuo et al., Appl. Surf. Sci. 325, 45 (2015).

    Article  ADS  Google Scholar 

  3. P. Makam et al., Biosens. Bioelectron. 100, 556e564 (2018).

    Article  Google Scholar 

  4. C. M. Wang, P. K. Roy, B. K. Juluri and S. Chattopad-hyay, Sens. Actuators B: Chem. 261, 218e225 (2018).

    Google Scholar 

  5. M. Ricci, C. Lofrumento, M. Becucci and E. M. Castel-lucci, Spectrochim. Acta A 188, 141e148 (2017).

    Google Scholar 

  6. K. Hering et al., Anal. Bioanal. Chem. 390, 113 (2008).

    Article  Google Scholar 

  7. S. Nie and S. R. Emory, Science 275, 1102 (1997).

    Article  Google Scholar 

  8. S. L. Kleinman et al., J. Am. Chem. Soc. 133, 4115 (2011).

    Article  Google Scholar 

  9. D. K. Lim et al., Nat. Mater. 9, 60 (2010).

    Article  ADS  Google Scholar 

  10. G. B. Jung et al., Biomed. Opt. Express 5, 216711 (2014).

    Google Scholar 

  11. N. Marquestaut et al., Langmuir 24, 11313 (2008).

    Article  Google Scholar 

  12. M. Jin et al., J. Phys. Chem. C 114, 21953 (2010).

    Article  Google Scholar 

  13. U. S. Dinish, F. C. Yaw, A. Agarwal and M. Olivo, Biosens. Bioelectron. 26, 1987 (2011).

    Article  Google Scholar 

  14. M. Pradhan et al., J. Phys. Chem. C 116, 24301 (2012).

    Article  Google Scholar 

  15. L. M. Tong, T. Zhu and Z. F. Liu, Chem. Soc. Rev. 40, 1296 (2011).

    Article  Google Scholar 

  16. A. Gopinath et al., Nano Lett. 9, 3922 (2009).

    Article  ADS  Google Scholar 

  17. N. Felidj et al., J. Chem. Phys. 120, 7141 (2004).

    Article  ADS  Google Scholar 

  18. N. R. Jana and T. Pal, Adv. Mater. 19, 1761 (2007).

    Article  Google Scholar 

  19. A. S. Indrasekara et al., Nanoscale 6, 8891 (2014).

    Article  ADS  Google Scholar 

  20. W. Wu et al., Sci. Rep. 5, 10208 (2015).

    Article  ADS  Google Scholar 

  21. Z. Zuo et al., Appl. Surf. Sci. 379, 66 (2016).

    Article  ADS  Google Scholar 

  22. F. Xu et al., J. Phys. Chem. C 115, 9977 (2011).

    Article  Google Scholar 

  23. Z. Li, K. Zhu, Q. Zhao and A. Meng, Appl. Surf. Sci. 377, 23 (2016).

    Article  ADS  Google Scholar 

  24. F. D. Angelis et al., Nat. Photonics 5, 682 (2011).

    Article  ADS  Google Scholar 

  25. G. Wang et al., J. Anal. Bioanal. Chem. 394, 1827 (2009).

    Article  Google Scholar 

  26. C. Fang et al., Biosens. Bioelectron 24, 216 (2008).

    Article  Google Scholar 

  27. D. Li et al., J. Mater. Chem. 20, 3688 (2010).

    Article  ADS  Google Scholar 

  28. M. Suzuki et al., J. Phys. Chem. B 108, 11660 (2004).

    Article  Google Scholar 

  29. P. M. Tessier et al., J. Am. Chem. Soc. 1292, 9554 (2000).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2019R1I1A3A01053117).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Honggu Chun or Gyeong Bok Jung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, B., Chun, H., Back, S.J. et al. Fabrication of Flexible, Highly Reproducible, and Hydrophobic Surface-enhanced Raman Scattering Substrates Through Silver-Nanoparticle Inkjet Printing. J. Korean Phys. Soc. 76, 1025–1028 (2020). https://doi.org/10.3938/jkps.76.1025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.76.1025

Keywords

Navigation