Skip to main content
Log in

Dipole Glass Phase in an Isolated Hydrogen-Bonded Mixed Crystal [(NH4)1−x Rbx]3H(SO4)2 (x = 0.58)

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

[(NH4)1−xRbx]3H(SO4)2 mixed crystals were investigated by dielectric constant measurement and Raman spectroscopy from room temperature to 7 K. In contrast to the result of (NH4)3H(SO4)2 (x = 0) showing multiple phase transitions, [(NH4)1−xRbx]3H(SO4)2 (x = 0.58) mixed crystal does not show any remarkable dielectric anomaly but a weak dielectric dispersion below 40 K, which is characterized by the Arrhenius law. From the measurement of the Raman spectra of both crystals, it is confirmed that the [(NH4)1−xRbx]3H(SO4)2 (x = 0.58) mixed crystal shows a global symmetry conservation between the two spectra measured at room temperature and at 20 K while the (NH4)3H(SO4)2 crystal exhibits drastic structural changes associated with the sequence of the phase transitions. It is concluded that [(NH4)1−xRbx]3H(SO4)2 (x = 0.58) mixed crystal shows a new dipole glass phase in the isolated hydrogen-bonded system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Busch and P. Scherrer, Naturwiss. 23, 737 (1935).

    Article  ADS  Google Scholar 

  2. G. Busch, Helv. Phys. Acta. 11, 269 (1938).

    Google Scholar 

  3. R. Blinc and B. Žekš, Soft Modes in Ferroelectrics and Antiferroelectrics (North-Holland, Amsterdam, 1974).

    Google Scholar 

  4. L. Novaković, The Pseudo-Spin Method in Magnetism and Ferroelectricity (Pergamon, New York, 1975).

    Google Scholar 

  5. See, for example, Ferroelectrics 71 and 72 (1987), Special Issue on KH2PO4 Type Ferro- and Antiferroelectrics.

  6. S. Koval et al., ab initio Studies of H-Bonded Systems: The Cases of Ferroelectric KH 2 PO 4 and Antiferroelectric NH 4 H 2 PO 4 in Ferroelectrics — Characterization and Modeling, edited by M. Lallart (InTech, Rijeka, Croatia, 2011).

    Google Scholar 

  7. M. Ichikawa, K. Motida and N. Yamada, Phys. Rev. B 36, 874 (1987), and references therein.

    Article  ADS  Google Scholar 

  8. Y. Moritomo, Y. Tokura, H. Takahashi and N. Mori, Phys. Rev. Lett. 67, 2041 (1991), and references therein.

    Article  ADS  Google Scholar 

  9. Y. Uesu and J. Kobayashi, Phys. Status Solidi A 34, 475 (1976).

    Article  ADS  Google Scholar 

  10. C. Totsuji and T. Matsubara, J. Korean Phys. Soc. 32, S50 (1998), and references therein.

    Google Scholar 

  11. M. Ichikawa, T. Gustafsson and I. Olovsson, Solid State Commun. 87, 349 (1993).

    Article  ADS  Google Scholar 

  12. Y. Moritomo et al., Phys. Rev. Lett. 71, 2833 (1993).

    Article  ADS  Google Scholar 

  13. K. Gesi, Phys. Status Solidi A 33, 479 (1976).

    Article  ADS  Google Scholar 

  14. K. Gesi, Jpn. J. Appl. Phys. 19, 1051 (1980).

    Article  ADS  Google Scholar 

  15. T. Osaka, Y. Makita and K. Gesi, J. Phys. Soc. Jpn. 49, 593 (1980).

    Article  ADS  Google Scholar 

  16. K. Gesi, J. Phys. Soc. Jpn. 42, 1785 (1977).

    Article  ADS  Google Scholar 

  17. K. Gesi, J. Phys. Soc. Jpn. 48, 886 (1980).

    Article  ADS  Google Scholar 

  18. M. Endo, T. Kaneko, T. Osaka and Y. Makita, J. Phys. Soc. Jpn. 52, 3829 (1983).

    Article  ADS  Google Scholar 

  19. K. Gesi, J. Phys. Soc. Jpn. 61, 162 (1992).

    Article  ADS  Google Scholar 

  20. M. Komukae, T. Osaka, T. Kaneko and Y. Makita, J. Phys. Soc. Jpn. 54, 3401 (1985).

    Article  ADS  Google Scholar 

  21. E. Courtens, T. F. Rosenbaum, S. E. Nalger and P. M. Horn, Phys. Rev. B 29, 515 (1984).

    Article  ADS  Google Scholar 

  22. H. Terauchi, T. Futamura, Y. Nishihata and S. Iida, J. Phys. Soc. Jpn. 53, 483 (1984).

    Article  ADS  Google Scholar 

  23. E. Courtens and H. Vogt, J. Chim. Phys. (Paris) 82, 317 (1985).

    Article  Google Scholar 

  24. E. Courtens, Ferroelectrics 72, 229 (1987), and references therein.

    Article  Google Scholar 

  25. K.-S. Lee, J. H. Koo and C. E. Lee, Solid State Commun. 240, 10 (2016).

    Article  ADS  Google Scholar 

  26. A. I. Baranov et al., Ferroelectrics 217, 285 (1998).

    Article  Google Scholar 

  27. W. Bronowska, V. Videnova-Adrabinska and A. Pietraszko, Ferroelectrics 172, 411 (1995).

    Article  Google Scholar 

  28. W. Bronowska and A. Pietraszko, J. Mol. Struct. 374, 171 (1996).

    ADS  Google Scholar 

  29. L. S. Smirnov et al., Phys. Solid State 43, 117 (2001).

    Article  ADS  Google Scholar 

  30. L. S. Smirnov et al., Crystallogr. Rep. 53, 418 (2008).

    Article  ADS  Google Scholar 

  31. M. Polomska et al., J. Mol. Struct. 887, 48 (2008).

    Article  ADS  Google Scholar 

  32. H. Omi, K. Suzuki and S. Hayashi, Solid State Ionics 179, 842 (2008).

    Article  Google Scholar 

  33. See, Phys. Status Solidi B 251, 1957 (2014), for recent intensive research on the formation of multiple ferroic glasses (magnetic, polar and strain glass).

  34. H. K. Shin, Solid State Commun. 128, 131 (2003).

    Article  ADS  Google Scholar 

  35. K. Friese et al., J. Solid State Chem. 165, 136 (2002).

    Article  ADS  Google Scholar 

  36. D. Swain and T. N. G. Row, Inorg. Chem. 46, 4411 (2007).

    Article  Google Scholar 

  37. Y. J. Sohn et al., Acta Cryst. B 65, 36 (2009).

    Article  Google Scholar 

  38. Y. J. Sohn, K. M. Sparta, M. Meven and G. Heger, Acta Cryst. B 67, 116 (2011).

    Article  Google Scholar 

  39. S. Suzuki and Y. Makita, Acta Cryst. B 34, 732 (1978).

    Article  Google Scholar 

  40. A. Leclaire et al., Acta Cryst. B 41, 209 (1985).

    Article  Google Scholar 

  41. P. M. Dominiak, J. Herold, W. Kolodziejski and K. Wozniak, Inorg. Chem. 42, 1590 (2003).

    Article  Google Scholar 

  42. G. J. McIntyre et al., Crystallogr. Rep. 58, 78 (2013).

    Article  ADS  Google Scholar 

  43. Y. J. Sohn et al., Acta Cryst. B 69, 336 (2013).

    Article  Google Scholar 

  44. B. S. Fortier, M. E. Fraser and R. D. Heyding, Acta Cryst. C 41, 1139 (1985).

    Article  Google Scholar 

  45. H. Vogel, Z. Phys. 22, 645 (1921).

    Google Scholar 

  46. G. S. Fulcher, J. Am. Ceram. Soc. 8, 339 (1925).

    Article  Google Scholar 

  47. S. L. Hutton et al., Phys. Rev. Lett. 66, 1990 (1991).

    Article  ADS  Google Scholar 

  48. M. D. Ediger, C. A. Angell and S. R. Nagel, J. Phys. Chem. 100, 13200 (1996).

    Article  Google Scholar 

  49. P. Rajagopal and G. Aruldhas, J. Raman Spectrosc. 19, 497 (1988).

    Article  ADS  Google Scholar 

  50. M. Damak et al., J. Mol. Struct. 130, 245 (1985).

    Article  ADS  Google Scholar 

  51. M. Kasahara, P. Kaung and T. Yagi, J. Phys. Soc. Jpn. 61, 3432 (1992).

    Article  ADS  Google Scholar 

  52. G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand Reinhold Co., Princeton, 1966, 12th edition), pp. 99–101.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Hallym University Research Fund, 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Hyeon Ko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, KS., Ko, JH. Dipole Glass Phase in an Isolated Hydrogen-Bonded Mixed Crystal [(NH4)1−x Rbx]3H(SO4)2 (x = 0.58). J. Korean Phys. Soc. 74, 695–700 (2019). https://doi.org/10.3938/jkps.74.695

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.74.695

Keywords

Navigation