Skip to main content
Log in

Experimental and Theoretical Investigation of the Spin Hamiltonian Parameters for the Cr3+ Ion in a BeAl2O4:Cr3+ Crystal

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The electron paramagnetic resonance of the Cr3+ ion in an alexandrite single crystal was explored. The angular dependence of the resonance fields observed using an X-band spectrometer in the crystallographic planes were analyzed using the monoclinic spin Hamiltonian. The spectroscopic splitting tensors gi and the 2nd order zero field splitting parameters |D| and |E| for the Cr3+ center at Al3+ site with mirror symmetry (Cs) in an alexandrite crystal were calculated using the crystal field theory for Cs symmetry. Then, the theoretical values were compared with the experimental values. The calculated spin Hamiltonian parameters explain nicely the experimental parameters for the Cr3+ center with mirror symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Walling, O.G. Peterson, H. P. Jenssen, R. C. Morris and E. W. O’Dell, IEEE J. Quantum Electron. QE-16, 1302 (1980).

    Google Scholar 

  2. J. C. Walling, Laser Focus 1, 45 (1982).

    Google Scholar 

  3. W. Yu, J. Zhu, W. Yu, D. Lyu, X. Lin and Z. Zhang, J. Am. Acad. Dermatol. 79, 479 (2018).

    Article  Google Scholar 

  4. R. M. F. Scalvi, M. S. Li and L. V. A. Scalvi, Phys. Chem. Miner. 31, 733 (2005).

    Article  ADS  Google Scholar 

  5. N. Saedi, A. Metelitsa, K. Petrell, K. A. Arndt and J. S. Dover, Arch. Dermatol. 148, 1360 (2012).

    Article  Google Scholar 

  6. Y. K. Kim, D. Y. Kim, S. J. Lee, W. S. Chung and S. B. Cho, J. Eur. Acad. Dermatol. Venereol. 28, 1007 (2014).

    Article  Google Scholar 

  7. N. M. Trindade, H. Kahn and E. M. Yoshimura, J. Lumin. 195, 356 (2018).

    Article  Google Scholar 

  8. N. M. Trindade, A. L. M. C. Malthez, A. de C. Nascimento, R. S da Silva, L. G. Jacobsohn and E. M. Yoshimura, Optical Materials 85, 281 (2018).

    Article  ADS  Google Scholar 

  9. E. Grillo, P. Gonzalez-Munoz, P. Boixeda, A. Cuevas, S. Vano and P. Jaen, Actas Dermosifiliogr. 107, 591 (2016)

    Article  Google Scholar 

  10. H. E. Swanson M. I. Cook, T. Issacs and E. H. Evans, Natl. Bur. Std. Circ. 539, 10 (1960).

    Google Scholar 

  11. E. F. Farrell, J. H. Fang and R. E. Newnham, Amer. Mineralogist 48, 804 (1963).

    Google Scholar 

  12. M. L. Shand and H. P. Jenssen, IEEE J. Quantum Electron. QE-19, 480 (1983).

    Google Scholar 

  13. D. A. Vinnik, D. A. Zherebtsov, S. A. Archugov, M. Bischoff and R. Niewa, Cryst. Grow. Des. 12, 3954 (2012).

    Article  Google Scholar 

  14. T. H. Yeom, A. R. Lim, S. H. Choh, K. S. Hong and Y. M. Yu, J. Phys.: Condens. Matter 7, 6117 (1995).

    ADS  Google Scholar 

  15. T. H. Yeom, K. S. Hong, I. Yu, H. W. Shin and S. H. Choh, J. Appl. Phys. 82, 2472 (1997).

    Article  ADS  Google Scholar 

  16. T. H. Yeom and S. H. Choh, J. Korean Phys. Soc. 45, 1606 (2004).

    Google Scholar 

  17. W. R. Barry and G. J. Troup, phys. stat. sol. 35, 861 (1969).

    Article  ADS  Google Scholar 

  18. C. E. Forbes, J. Chem. Phys. 79, 2590 (1983).

    Article  ADS  Google Scholar 

  19. J. Hu, Y. Zhao, B. Chen, H. Xia, Y. Zhang and H. Ye, Ceramics International 44, 20220 (2018).

    Article  Google Scholar 

  20. S. Ghanbari and A. Major, Laser Phys. 26, 075001 (2016).

    Article  ADS  Google Scholar 

  21. Y. Y. Yeung and D. J. Newman, Phys. Rev. B 34, 2258 (1986).

    Article  ADS  Google Scholar 

  22. M. L. Du and M. G. Zhao, Solid State Commun. 76, 565 (1990).

    Article  ADS  Google Scholar 

  23. D. J. Newman, J. Phys. C: Solid State Phys. 15, 6627 (1982).

    Article  ADS  Google Scholar 

  24. Y. Y. Yeung, J. Phys.: Condens. Matter 2, 2461 (1990).

    ADS  Google Scholar 

  25. X. P. He and M. L. Du, J. Phys. Chem. Solids 49, 339 (1988).

    Article  Google Scholar 

  26. R. H. Bak, Y. M. Yu and Y. K. Lee, Korean Crystallogr. 3, 111 (1992).

    Google Scholar 

  27. P. P. Phakey, phys. stat. sol. 32, 801 (1969).

    Article  ADS  Google Scholar 

  28. A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Oxford University Press, Oxford, 1970), Chaps. 3 and 7.

    Google Scholar 

  29. C. Rudowicz, Mag. Res. Rev. 13, 1 (1987).

    Google Scholar 

  30. S. K. Misra and C. Rusowicz, phys. stat. sol. (b) 147, 677 (1988).

    Article  ADS  Google Scholar 

  31. M. J. Mombourquette, J. A. Weil and D. G. McGavin, Operating Instruction for Computer Program EPR-NMR ver. 6.0 (Univ. of Saskatchewan, Canada, 1995).

    Google Scholar 

  32. J. H. Hockenberry, L. C. Brown and D. Williams, J. Chem. Phys. 28, 367 (1958).

    Article  ADS  Google Scholar 

  33. H. L. Reaves and T. E. Gilmer, J. Chem. Phys. 42, 4138 (1965).

    Article  ADS  Google Scholar 

  34. C. Rusowicz, J. Chem. Phys. 84, 5045 (1986).

    Article  ADS  Google Scholar 

  35. M. G. Zhao and M. L. Du, Phys. Rev. B 28, 6481, (1983).

    Google Scholar 

  36. M. G. Zhao, M. L. Du and G. Y. Sen, J. Phys. C 20, 5557 (1987).

    Article  ADS  Google Scholar 

  37. M. G. Zhao, J. A. Xu, G. R. Bai and H. S. Xie, Phys. Rev. B 27, 1516 (1983).

    Article  ADS  Google Scholar 

  38. J. S. Griffith, The Theory of Transition-Metal Ions (Cambridge University Press, 1961).

    MATH  Google Scholar 

  39. G. Z. Wu and X. R. Zhang, Acta Physics Sinica 32, 64 (1983)

    ADS  Google Scholar 

  40. X. S. Ma, J. J. Lu and Z. Y. Qian, Acta Phys. Sinica 32, 1302 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Ho Yeom.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeom, T.H., Du, M.L. Experimental and Theoretical Investigation of the Spin Hamiltonian Parameters for the Cr3+ Ion in a BeAl2O4:Cr3+ Crystal. J. Korean Phys. Soc. 74, 245–250 (2019). https://doi.org/10.3938/jkps.74.245

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.74.245

Keywords

Navigation