Advertisement

Journal of the Korean Physical Society

, Volume 73, Issue 8, pp 1049–1054 | Cite as

Study of the 2H(7Be,p+3He+4He)n Reaction for Resonances in 8B

  • K. Y. Chae
  • J. H. Lee
Article
  • 8 Downloads

Abstract

The solar neutrino is a good probe for understanding the internal structure and the energy production mechanism of stars with masses of about that of the sun because it does not interact with other materials of the star. The production rate of the solar neutrino is largely uncertain due to the lack of nuclear structure information on the 8B nucleus. In the search for resonances in the highly unstable nucleus 8B, which affect the production of solar neutrino, the 2H(7Be, p+3He+4He)n reaction was studied by using a radioactive 7Be beam produced at the Holifield Radioactive Ion Beam Facility of the Oak Ridge National Laboratory. Two layers of annular silicon strip detectors were used for particle identification, and the excitation energy of 8B was reconstructed by requiring triple coincidence for p, 3He, and 4He.

Keywords

Solar neutrino Relativistic reaction kinematics Energy level of 8B nucleus 7Be(d,n)8B in inverse kinematics Radioactive ion beam 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. D. Clayton, Principles of Stellar Evolution and Nucleosynthesis (University of Chicago Press, 1983).Google Scholar
  2. [2]
    C. E. Rolfs and W. S. Rodney, Cauldrons in the Cosmos (University of Chicago Press, 1988).Google Scholar
  3. [3]
    T. Motobayashi et al., Phys. Rev. Lett. 73, 2680 (1994).ADSCrossRefGoogle Scholar
  4. [4]
    L. V. Grigorenko, B. V. Danilin, V. D. Efros, N. B. Shulgina and M. V. Zhukov, Phys. Rev. C 57, R2099 (1998).ADSCrossRefGoogle Scholar
  5. [5]
    K. Ogata, M. Yahiro, Y. Iseri and M. Kamimura, Phys. Rev. C 67, 011602(R) (2003).ADSCrossRefGoogle Scholar
  6. [6]
    Xian Chao Du, Bing Guo, Zhi Hong Li, Dan Yang Pang, Er Tao Li and Wei Ping Liu, Sci. China Phys. Mech. Astron. 58, 062001 (2015).Google Scholar
  7. [7]
    R. Davis, Jr., Phys. Rev. Lett. 12, 303 (1964).ADSCrossRefGoogle Scholar
  8. [8]
    J. N. Bahcall, W. F. Huebner, S. H. Lubow, P. D. Parker and R. K. Ulrich, Rev. Mod. Phys. 54, 767 (1982).ADSCrossRefGoogle Scholar
  9. [9]
    R. Davis, Jr., D. S. Harmer and K. C. Hoffman, Phys. Rev. Lett. 20, 1205 (1968).ADSCrossRefGoogle Scholar
  10. [10]
    Y. Fukuda et al., Phys. Rev. Lett. 81, 1562 (1998).ADSCrossRefGoogle Scholar
  11. [11]
    K. Y. Chae et al., J. Korean Phys. Soc. 61, 1786 (2012).ADSCrossRefGoogle Scholar
  12. [12]
    L. Gialanella et al., Nucl. Instrum. Methods Phys. Res. B 197, 150 (2002).ADSCrossRefGoogle Scholar
  13. [13]
    D. W. Bardayan et al., Phys. Rev. C 63, 065802 (2001).ADSCrossRefGoogle Scholar
  14. [14]
  15. [15]
    L. V. Grigorenko, B. V. Danilin, V. D. Efros, N. B. Shulgina and M. V. Zhukov, Phys. Rev. C 60, 044312 (1999).ADSCrossRefGoogle Scholar
  16. [16]
    P. Descouvemont and D. Baye, Nucl. Phys. A 567, 341 (1994).ADSCrossRefGoogle Scholar
  17. [17]
    R. J. A. Lambourne, Relativity, Gravitation and Cosmology, 1st ed. (Cambridge University Press, 2010), Chap. 2.zbMATHGoogle Scholar
  18. [18]
    G. F. Knoll, Radiation Detection and Measurement (Wiley, 2000).Google Scholar
  19. [19]
    S. Kubono et al., Eur. Phys. J. A 13, 217 (2002).ADSGoogle Scholar
  20. [20]
    H. Yamaguchi et al., Nucl. Instrum. Methods Phys. Res. A 589, 150 (2008).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  1. 1.Department of PhysicsSungkyunkwan UniversitySuwonKorea

Personalised recommendations