Skip to main content
Log in

Room-Temperature Atomic Structure and Lattice Instability of In Nanowires on Si(111)

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

One-dimensional indium chains on Si(111) exhibit both temperature-and defect-induced perioddoubling (×2) structural transitions, and their natures have been focus of recent investigations. Using density functional perturbation theory calculations, we examined the vibrational properties of the room-temperature Si(111)In-4×1 structure. The phonon band structure revealed two unstable modes at the zone-boundary in the chain direction, which lead to a lattice instability towards a structure with parallel trimers. This lattice-instability-driven 4 × 2 structure is different from the low-temperature 4×2 (LT-4×2) structure (hexagon structure). The result suggests that the roomtemperature phase is neither a static 4×1 phase nor the dynamical fluctuation of the LT-4×2 phase. We demonstrate that the room-temperature phase is a dynamically fluctuating parallel-trimer 4×2 phase, and the fluctuations become suppressed near the defects to result in the defect-induced ×2 structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Roth, One dimensional metals (VCH, Weinheim, 1995).

    Google Scholar 

  2. S. Baroni, S. Gironcoli, A. D. Corso and P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001).

    Article  ADS  Google Scholar 

  3. C. Watanabe, S. ChibaS and Y. Ono, J. Phys. Soc. Jpn. 76, 114704 (2007).

    Article  ADS  Google Scholar 

  4. J. M. Carpinelli, H. H. Weitering, M. Bartkowiak, R. Stumpf and E. W. Plummer, Phys. Rev. Lett. 79, 2859 (1997).

    Article  ADS  Google Scholar 

  5. D. Farías, W. Kamiński, J. Lobo, J. Ortega, E. Hulpke, R. Pérez, F. Flores and E. G. Michel, Phys. Rev. Lett. 91, 016103 (2003).

    Article  ADS  Google Scholar 

  6. R. Pérez, J. Ortega and F. Flores, Phys. Rev. Lett. 86, 4891 (2001).

    Article  ADS  Google Scholar 

  7. O. Bunk, G. Falkenberg, J. H. Zeysing, L. Lottermoser, R. L. Johnson, M. Nielsen, F. Berg-Rasmussen, J. Baker and R. Feidenhans’l, Phys. Rev. B 59, 12228 (1999).

    Article  ADS  Google Scholar 

  8. J-H. Cho, D-H. Oh, K. S. Kim and L. Kleinman, Phys. Rev. B 64, 235302 (2001).

    Article  ADS  Google Scholar 

  9. H. W. Yeom, S. Takeda, E. Rotenberg, I. Matsuda, K. Horikoshi, J. Schaefer, C. M. Lee, S. D. Kevan, T. Ohta, T. Nagao and S. Hasegawa, Phys. Rev. Lett. 82, 4898 (1999).

    Article  ADS  Google Scholar 

  10. C. Kumpf, O. Bunk, J. H. Zeysing, Y. Su, M. Nielsen, R. L. Johnson, R. Feidenhans’l and K. Bechgaard, Phys. Rev. Lett. 85, 4916 (2000).

    Article  ADS  Google Scholar 

  11. S. J. Park, H. W. Yeom, S. H. Min, D. H. Park and I-W. Lyo, Phys. Rev. Lett. 93, 106402 (2004).

    Article  ADS  Google Scholar 

  12. G. Lee, S-Y. Yu, H. Kim and J-Y. Koo, Phys. Rev. B 70, 121304(R) (2004).

    Article  ADS  Google Scholar 

  13. G. Lee, S-Y. Yu, D. Lee, H. Kim and J-Y. Koo, Jpn. J. Appl. Phys. 45, 2087 (2006).

    Article  ADS  Google Scholar 

  14. J. Guo, G. Lee and E. W. Plummer, Phys. Rev. Lett. 95, 046102 (2005).

    Article  ADS  Google Scholar 

  15. G. Lee, J. Guo and E. W. Plummer, Phys. Rev. Lett. 95, 116103 (2005).

    Article  ADS  Google Scholar 

  16. J-H. Cho, J-Y. Lee and L. Kleinman, Phys. Rev. B 71, 081310(R) (2005).

    Article  ADS  Google Scholar 

  17. C. González, F. Flores and J. Ortega, Phys. Rev. Lett. 96, 136101 (2006).

    Article  ADS  Google Scholar 

  18. A. A. Stekolnikov, K. Seino, F. Bechstedt, S. Wippermann, W. G. Schmidt, A. Calzolari and M. Buongiorno Nardelli, Phys. Rev. Lett. 98, 026105 (2007).

    Article  ADS  Google Scholar 

  19. C. González, J. Guo, J. Ortega, F. Flores and H. H. Weitering, Phys. Rev. Lett. 102, 115501 (2009).

    Article  ADS  Google Scholar 

  20. S. Chandola, K. Hinrichs, M. Gensch, N. Esser, S. Wippermann, W. G. Schmidt, F. Bechstedt, K. Fleischer and J. F. McGilp, Phys. Rev. Lett. 102, 226805 (2009).

    Article  ADS  Google Scholar 

  21. J-H. Cho and J-Y. Lee, Phys. Rev. B 76, 033405 (2007).

    Article  ADS  Google Scholar 

  22. S. Wipperman and W. G. Schmidt, Phys. Rev. Lett. 105, 126102 (2010).

    Article  ADS  Google Scholar 

  23. http:ўw.abinit.org

  24. N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).

    Article  ADS  Google Scholar 

  25. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996); 78, 1396(E) (1997).

    Article  ADS  Google Scholar 

  26. P. Giannozzi, S. de Gironcoli, P. Pavone and S. Baroni, Phys. Rev. B 43, 7231 (1991).

    Article  ADS  Google Scholar 

  27. J. Tersoff and D. R. Hamann, Phys. Rev. Lett. 50, 1998 (1983); Phys. Rev. B 31, 805 (1985).

    Article  ADS  Google Scholar 

  28. F. Bechstedt, A. Krivosheeva, J. Furthmüller and A. A. Stekolnikov, Phys. Rev. B 68, 193406 (2003).

    Article  ADS  Google Scholar 

  29. K. Sakamoto, H. Ashima, H. W. Yeom and W. Uchida, Phys. Rev. B 62, 9923 (2000).

    Article  ADS  Google Scholar 

  30. K. Fleischer, S. Chandola, N. Esser, W. Richter and J. F. McGilp, Phys. Rev. B 67, 235318 (2003).

    Article  ADS  Google Scholar 

  31. K. Fleischer, S. Chandola, N. Esser, W. Richter and J. F. McGilp, Phys. Rev. B 76, 205406 (2007).

    Article  ADS  Google Scholar 

  32. W. G. Schmidt, S. Wippermann, S. Sanna, M. Babilon, N. J. Vollmers and U. Gerstmann, Phys. Status Solidi B 249, 343 (2012).

    Article  ADS  Google Scholar 

  33. For E cutoff ≤ 20 Ry, the antiparallel trimer 4 × 2 structure is stable, whereas the hexagon 4 × 2 relaxes to the antiparallel trimer in accordance with the other DFT calculations [18,21]. With the increased E cutoff ≥ 32 Ry, however, both the antiparallel trimer and hexagon 4 × 2 structures relax to the parallel-trimer 4 × 2 structure.

  34. The criterion for the stability of structures is the free energy at finite temperature. The phonon entropy contribution to the free energy, however, is expected to be similar for both the parallel-trimer 4 × 2 and 4 × 1 structures, because their atomic geometries are marginally different and they share a metallic electronic structure. Therefore, the total energy difference can be used to determine the stable geometry at finite temperatures above the transition temperature.

  35. H. Shim, S-Y. Yu, W. Lee, J-Y. Koo and G. Lee, Appl. Phys. Lett. 94, 231901 (2009).

    Article  ADS  Google Scholar 

  36. G. Lee, S-Y. Yu, H. Kim, J-Y. Koo, H. I. Lee and D. W. Moon, Phys. Rev. B 67, 035327 (2003).

    Article  ADS  Google Scholar 

  37. Y. J. Sun, S. Agario, S. Souma, K. Sugawara, Y. Tago, T. Sato and T. Takahashi, Phys. Rev. B 77, 125115 (2008).

    Article  ADS  Google Scholar 

  38. H. W. Yeom, K. Horikoshi, H. M. Zhang, K. Ono and R. I. G. Uhrberg, Phys. Rev. B 65, 241307(R) (2002).

    Article  ADS  Google Scholar 

  39. K. Hata, S. Yasuda and H. Shigekawa, Phys. Rev. B 60, 8164 (1999).

    Article  ADS  Google Scholar 

  40. J. Yoshinobu, Prog. Surf. Sci. 77, 37 (2004).

    Article  ADS  Google Scholar 

  41. J-Y. Koo, J-Y. Yi, C. Hwang, D-H. Kim, G. Lee and S. Lee, Phys. Rev. B 57, 8782 (1998).

    Article  ADS  Google Scholar 

  42. T. Yokoyama and K. Takayanagi, Phys. Rev. B 56, 10483 (1997).

    Article  ADS  Google Scholar 

  43. O. N. Chung, H. Kim, S. Chung and J-Y. Koo, Phys. Rev. B 73, 033303 (2006).

    Article  ADS  Google Scholar 

  44. S-Y. Yu, H. Kim and J-Y. Koo, Phys. Rev. Lett. 100, 036107 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanchul Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Y.H., Lee, G. & Kim, H. Room-Temperature Atomic Structure and Lattice Instability of In Nanowires on Si(111). Journal of the Korean Physical Society 72, 372–378 (2018). https://doi.org/10.3938/jkps.72.372

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.72.372

Keywords

Navigation