Skip to main content
Log in

Thermal stability and mechanical properties of Si/Ge superlattice nanowires having inclination interfaces from simulations at atomic scale

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations were performed to investigate the packing changes and mechanical properties of the Si/Ge superlattice nanowires with tilted interfaces. Using potential energy, Lode-Nadai parameters, and atomic pressure as well as visually packing images, the thermal stability and bearing-load capacity are identified at elevated temperatures. The stress–strain curves for these nanowires having different interfaces along typical crystal growth directions suggest that there are different stages including elastic deformation, yield, necking, and fracture during tension at room temperature. The simulation results reveal that the size and the layer thickness have great influence on thermal stability and mechanical properties of these nanowires. Their elasticity and tensile strength of the nanowires as well as the plastic deformation are significantly affected by the layer’s thickness and bonding in the interfaces. The atomic pressure and Lode-Nadai parameters of these nanowires at room temperature provides the details of stress and bearing load at atomic scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Twaha, J. Zhu, Y. Yan, B. Li, A comprehensive review of thermoelectric technology: materials, applications, modelling and performance improvement. Renew. Sustain. Energy Rev. 65, 698–726 (2016). https://doi.org/10.1016/j.rser.2016.07.034

    Article  Google Scholar 

  2. T.M. Tritt, M.A. Subramanian, Thermoelectric materials, phenomena, and applications: a bird’s eye view. MRS Bull. 31, 188–198 (2006). https://doi.org/10.1557/mrs2006.44

    Article  Google Scholar 

  3. T. Takeuchi, A. Yamamoto, S. Ghodke, Development of thermoelectric materials consisting solely of environmental friendly elements. Mater. Trans. 57, 1029–1034 (2016). https://doi.org/10.2320/matertrans.MF201610

    Article  Google Scholar 

  4. M. Dresselhaus, G. Chen, M. Tang, R. Yang, H. Lee, D. Wang, Z.F. Ren, J.-P. Fleurial, P. Gogna, New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043–1053 (2007). https://doi.org/10.1002/adma.200600527

    Article  Google Scholar 

  5. L. Schubert, P. Werner, N.D. Zakharov, G. Gerth, F.M. Kolb, L. Long, U. Gösele, T.Y. Tan, Silicon nanowhiskers grown on〈111〉Si substrates by molecular-beam epitaxy. Appl. Phys. Lett. 84, 4968–4970 (2004). https://doi.org/10.1063/1.1762701

    Article  ADS  Google Scholar 

  6. L. Thumfart, J. Carrete, B. Vermeersch, N. Ye, T. Truglas, J. Feser, H. Groiss, N. Mingo, A. Rastelli, Thermal transport through Ge-rich Ge/Si superlattices grown on Ge(0 0 1). J. Phys. D: Appl. Phys. 51, 014001 (2018). https://doi.org/10.1088/1361-6463/aa98c5

    Article  ADS  Google Scholar 

  7. N. Petermann, T. Schneider, J. Stötzel, N. Stein, C. Weise, I. Wlokas, G. Schierning, H. Wiggers, Microwave plasma synthesis of Si/Ge and Si/WSi2 nanoparticles for thermoelectric applications. J. Phys. D: Appl. Phys. 48, 314010 (2015). https://doi.org/10.1088/0022-3727/48/31/314010

    Article  ADS  Google Scholar 

  8. B. Eisenhawer, V. Sivakov, A. Berger, S. Christiansen, Growth of axial SiGe heterostructures in nanowires using pulsed laser deposition. Nanotechnology 22, 305604 (2011). https://doi.org/10.1088/0957-4484/22/30/305604

    Article  Google Scholar 

  9. J.M. MacLeod, C.V. Cojocaru, F. Ratto, C. Harnagea, A. Bernardi, M.I. Alonso, F. Rosei, Modified Stranski-Krastanov growth in Ge/Si heterostructures via nanostenciled pulsed laser deposition. Nanotechnology 23, 065603 (2012). https://doi.org/10.1088/0957-4484/23/6/065603

    Article  ADS  Google Scholar 

  10. N. Geyer, Z. Huang, B. Fuhrmann, S. Grimm, M. Reiche, T.-K. Nguyen-Duc, J. de Boor, H.S. Leipner, P. Werner, U. Gösele, Sub-20 nm Si/Ge superlattice nanowires by metal-assisted etching. Nano Lett. 9, 3106–3110 (2009). https://doi.org/10.1021/nl900751g

    Article  ADS  Google Scholar 

  11. S. Fujii, T. Yokoi, M. Yoshiya, Atomistic mechanisms of thermal transport across symmetric tilt grain boundaries in MgO. Acta Mater. 171, 154–162 (2019). https://doi.org/10.1016/j.actamat.2019.04.009

    Article  ADS  Google Scholar 

  12. A. Bagri, S.-P. Kim, R.S. Ruoff, V.B. Shenoy, Thermal transport across twin grain boundaries in polycrystalline graphene from nonequilibrium molecular dynamics simulations. Nano Lett. 11, 3917–3921 (2011). https://doi.org/10.1021/nl202118d

    Article  ADS  Google Scholar 

  13. M. Tan, Y. Hao, Y. Deng, D. Yan, Z. Wu, Tilt-structure and high-performance of hierarchical Bi1.5Sb0.5Te3 nanopillar arrays. Sci. Rep. 8, 6384 (2018). https://doi.org/10.1038/s41598-018-24872-4

    Article  ADS  Google Scholar 

  14. P. Ferrando-Villalba, S. Chen, A.F. Lopeandía, F.X. Alvarez, M.I. Alonso, M. Garriga, J. Santiso, G. Garcia, A.R. Goñi, D. Donadio, J. Rodríguez-Viejo, Beating the thermal conductivity alloy limit using long-period compositionally graded Si 1–x Ge x superlattices. J. Phys. Chem. C. 124, 19864–19872 (2020). https://doi.org/10.1021/acs.jpcc.0c06410

    Article  Google Scholar 

  15. S. Yamasaka, Y. Nakamura, T. Ueda, S. Takeuchi, A. Sakai, Phonon transport control by nanoarchitecture including epitaxial Ge nanodots for Si-based thermoelectric materials. Sci. Rep. 5, 14490 (2015). https://doi.org/10.1038/srep14490

    Article  ADS  Google Scholar 

  16. Z. Wang, A molecular dynamics study of the thermal transport in silicon/germanium nanostructures: from cross-plane to in-plane. Mater. Today Commun. 22, 100822 (2020). https://doi.org/10.1016/j.mtcomm.2019.100822

    Article  Google Scholar 

  17. L. Ying-Guang, R. Guo-Liang, H. Jiang-shuai, Z. Jing-Wen, X. Xin-qiang, School of energy, power and mechanical engineering, North China Electric Power University, Baoding 071003, China, thermal conductivity of Si/Ge superlattices containing tilted interface. Acta Physica Sinica. 70, 113101–113101 (2021). https://doi.org/10.7498/aps.70.20201807

    Article  Google Scholar 

  18. Y.-G. Liu, G.-L. Ren, A. Chernatynskiy, X.-F. Zhao, The effect of interface angle on the thermal conductivity of Si/Ge superlattices. Phys. Chem. Chem. Phys. 23, 23225–23232 (2021). https://doi.org/10.1039/D1CP03544D

    Article  Google Scholar 

  19. Md.R. Islam, A.S.M.J. Islam, K. Liu, Z. Wang, S. Qu, Z. Wang, Strain engineering on the electronic, phonon, and optical properties of monolayer boron antimonide. Chem. Phys. 551, 111334 (2021). https://doi.org/10.1016/j.chemphys.2021.111334

    Article  Google Scholar 

  20. A.-X. Zhang, J.-T. Liu, S.-D. Guo, Strain effects on phonon transport in antimonene from a first-principles study. Phys. Chem. Chem. Phys. 19, 14520–14526 (2017). https://doi.org/10.1039/C7CP02486J

    Article  Google Scholar 

  21. L. Zhu, J. Wang, Strain/stress-engineering in phonon properties of streesed semiconductor nanowires, in: Rhodes, Greece, 2013: pp. 914–917. https://doi.org/10.1063/1.4825648

  22. C. Liu, P. Lu, W. Chen, Y. Zhao, Y. Chen, Phonon transport in graphene based materials. Phys. Chem. Chem. Phys. 23, 26030–26060 (2021). https://doi.org/10.1039/D1CP02328D

    Article  Google Scholar 

  23. H.Y. Lv, W.J. Lu, D.F. Shao, H.Y. Lu, Y.P. Sun, Strain-induced enhancement in the thermoelectric performance of a ZrS 2 monolayer. J. Mater. Chem. C. 4, 4538–4545 (2016). https://doi.org/10.1039/C6TC01135G

    Article  Google Scholar 

  24. L.A.A. Algharagholy, T. Pope, C.J. Lambert, Strain-induced bi-thermoelectricity in tapered carbon nanotubes. J. Phys. Condens. Matter. 30, 105304 (2018). https://doi.org/10.1088/1361-648X/aaa872

    Article  ADS  Google Scholar 

  25. Y.D. Kuang, L. Lindsay, S.Q. Shi, G.P. Zheng, Tensile strains give rise to strong size effects for thermal conductivities of silicene, germanene and stanene. Nanoscale 8, 3760–3767 (2016). https://doi.org/10.1039/C5NR08231E

    Article  ADS  Google Scholar 

  26. G. Li, Q. An, S.I. Morozov, B. Duan, P. Zhai, Q. Zhang, W.A. Goddard III., G.J. Snyder, Determining ideal strength and failure mechanism of thermoelectric CuInTe 2 through quantum mechanics. J. Mater. Chem. A. 6, 11743–11750 (2018). https://doi.org/10.1039/C8TA03837F

    Article  Google Scholar 

  27. M. Hunt, K. Salmon, J. Haney, C. Evans, A. Gozen, J. Leachman, Ultimate tensile strengths of 3D printed carbon-fiber reinforced thermoplastics in liquid nitrogen. IOP Conf. Ser. Mater. Sci. Eng. 755, 012118 (2020). https://doi.org/10.1088/1757-899X/755/1/012118

    Article  Google Scholar 

  28. A. Schmitz, C. Schmid, J. de Boor, E. Müller, Dispersion of multi-walled carbon nanotubes in skutterudites and its effect on thermoelectric and mechanical properties. J Nanosci Nanotechnol. 17, 1547–1554 (2017). https://doi.org/10.1166/jnn.2017.13727

    Article  Google Scholar 

  29. J. Pasko, S. Gaspar, Experimental monitoring of HB hardness and ultimate tensile strength UTS of pressure of Al-Si castings depending on the increase pressure changes. AMR. 711, 272–275 (2013). https://doi.org/10.4028/www.scientific.net/AMR.711.272

    Article  Google Scholar 

  30. P. Li, Y.Q. Yang, V. Koval, X. Luo, J. Chen, W. Zhang, E. Emily Lin, B. Wang, H. Yan, Temperature-dependent deformation in silver-particle-covered copper nanowires by molecular dynamics simulation. J. Materiomics. 8, 68–78 (2022). https://doi.org/10.1016/j.jmat.2021.05.005

    Article  Google Scholar 

  31. J. Tersoff, Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys. Rev. B. 39, 5566–5568 (1989). https://doi.org/10.1103/PhysRevB.39.5566

    Article  ADS  Google Scholar 

  32. J. Tersoff, Empirical interatomic potential for silicon with improved elastic properties. Phys. Rev. B. 38, 9902–9905 (1988). https://doi.org/10.1103/PhysRevB.38.9902

    Article  ADS  Google Scholar 

  33. M. Hu, D. Poulikakos, Si/Ge superlattice nanowires with ultralow thermal conductivity. Nano Lett. 12, 5487–5494 (2012). https://doi.org/10.1021/nl301971k

    Article  ADS  Google Scholar 

  34. N. Samaraweera, J.M. Larkin, K.L. Chan, K. Mithraratne, Reduced thermal conductivity of Si/Ge random layer nanowires: A comparative study against superlattice counterparts. J. Appl. Phys. 123, 244303 (2018). https://doi.org/10.1063/1.5030711

    Article  ADS  Google Scholar 

  35. X. Mu, L. Wang, X. Yang, P. Zhang, A.C. To, T. Luo, Ultra-low thermal conductivity in Si/Ge hierarchical superlattice nanowire. Sci Rep. 5, 16697 (2015). https://doi.org/10.1038/srep16697

    Article  ADS  Google Scholar 

  36. S. Hu, H. Zhang, S. Xiong, H. Zhang, H. Wang, Y. Chen, S. Volz, Y. Ni, Screw dislocation induced phonon transport suppression in SiGe superlattices. Phys. Rev. B. 100, 075432 (2019). https://doi.org/10.1103/PhysRevB.100.075432

    Article  ADS  Google Scholar 

  37. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2009). https://doi.org/10.1088/0965-0393/18/1/015012

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Project supported by the National Natural Science Foundation of China (Grant No. 51671051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Dai, F., Li, J. et al. Thermal stability and mechanical properties of Si/Ge superlattice nanowires having inclination interfaces from simulations at atomic scale. Appl. Phys. A 128, 768 (2022). https://doi.org/10.1007/s00339-022-05903-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05903-4

Keywords

Navigation