Skip to main content
Log in

Gravitational wave searches for aligned-spin binary neutron stars using nonspinning templates

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We study gravitational wave searches for merging binary neutron stars (NSs). We use nonspinning template waveforms towards the signals emitted from aligned-spin NS-NS binaries, in which the spins of the NSs are aligned with the orbital angular momentum. We use the TaylorF2 waveform model, which can generate inspiral waveforms emitted from aligned-spin compact binaries. We employ the single effective spin parameter χeff to represent the effect of two component spins (χ1, χ2) on the wave function. For a target system, we choose a binary consisting of the same component masses of 1.4M and consider the spins up to χ i = 0.4. We investigate fitting factors of the nonspinning templates to evaluate their efficiency in gravitational wave searches for the aligned-spin NS-NS binaries. We find that the templates can achieve the fitting factors exceeding 0.97 only for the signals in the range of −0.2 ≲ χeff ≲ 0. Therefore, we demonstrate the necessity of using aligned-spin templates not to lose the signals outside that range. We also show how much the recovered total mass can be biased from the true value depending on the spin of the signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 061102 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  2. B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 241103 (2016).

    Article  ADS  Google Scholar 

  3. B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 118, 221101 (2017).

    Article  ADS  Google Scholar 

  4. B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 241102 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  5. B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. X 6, 041014 (2016).

    Google Scholar 

  6. B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. X 6, 041015 (2016).

    Google Scholar 

  7. B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Astrophys. J. 832, L21 (2016).

    Article  ADS  Google Scholar 

  8. J. Abadie et al. (LIGO Scientific Collaboration), Class. Quantum Grav. 32, 074001 (2015).

    Article  ADS  Google Scholar 

  9. F. Acernese et al., Class. Quantum Grav. 32, 024001 (2015).

    Article  ADS  Google Scholar 

  10. Y. Aso et al. (The KAGRA Collaboration), Phys. Rev. D 88, 043007 (2013).

    Article  ADS  Google Scholar 

  11. J. Abadie et al. (LIGO Scientific Collaboration and Virgo Collaboration), Class. Quantum Grav. 27, 173001 (2010).

    Article  ADS  Google Scholar 

  12. J. M. Lattimer and M. Prakash, Phy. Repts. 442, 109 (2007).

    Article  ADS  Google Scholar 

  13. M. Prakash (2013), [arXiv:1307.0397].

  14. C-H. Lee, H-S. Cho, Y. M. Kim and H-Y. Park, J. Korean Phys. Soc. 59, 2118 (2011).

    Article  Google Scholar 

  15. C-H. Lee and H-S. Cho, Nuclear Physics A 928, 296 (2014).

    Article  ADS  Google Scholar 

  16. T. A. Apostolatos, Phys. Rev. D 52, 605 (1995).

    Article  ADS  Google Scholar 

  17. T. Dal Canton et al., Phys. Rev. D 90, 082004 (2014).

    Article  ADS  Google Scholar 

  18. S. Privitera et al., Phys. Rev. D 89, 024003 (2014).

    Article  ADS  Google Scholar 

  19. C. Capano, I. Harry, S. Privitera and A. Buonanno, Phys. Rev. D 93, 124007 (2016).

    Article  ADS  Google Scholar 

  20. H-S. Cho, Phys. Rev. D 94, 124045 (2016).

    Article  ADS  Google Scholar 

  21. D. A. Brown, I. Harry, A. Lundgren and A. H. Nitz, Phys. Rev. D 86, 084017 (2012).

    Article  ADS  Google Scholar 

  22. P. Ajith, N. Fotopoulos, S. Privitera, A. Neunzert, N. Mazumder and A. J. Weinstein, Phys. Rev. D 89, 084041 (2014).

    Article  ADS  Google Scholar 

  23. I. W. Harry, A. H. Nitz, D. A. Brown, A. P. Lundgren, E. Ochsner and D. Keppel, Phys. Rev. D 89, 024010 (2014).

    Article  ADS  Google Scholar 

  24. T. Dal Canton, A. P. Lundgren and A. B. Nielsen, Phys. Rev. D 91, 062010 (2015).

    Article  ADS  Google Scholar 

  25. L. Blanchet, Living Rev. Relativity 17, 2 (2014).

    Article  ADS  Google Scholar 

  26. Advanced LIGO anticipated sensitivity curves, https://dcc.ligo.org/LIGO-T0900288/public.

  27. H-S. Cho and C-H. Lee, Class. Quantum Grav. 31, 235009 (2014).

    Article  ADS  Google Scholar 

  28. H-S. Cho, E. Ochsner, R. O’Shaughnessy, C. Kim and C-H. Lee, Phys. Rev. D 87, 024004 (2013).

    Article  ADS  Google Scholar 

  29. B. Allen, W. G. Anderson, P. R. Brady, D. A. Brown and J. D. E. Creighton, Phys. Rev. D 85, 122006 (2012).

    Article  ADS  Google Scholar 

  30. C. Cutler and M. Vallisneri, Phys. Rev. D 76, 104018 (2007).

    Article  ADS  Google Scholar 

  31. M. Favata, Phys. Rev. Lett. 112, 101101 (2014).

    Article  ADS  Google Scholar 

  32. H-S. Cho, Class. Quantum Grav. 32, 235007 (2015).

    Article  ADS  Google Scholar 

  33. H-S. Cho, Class. Quantum Grav. 32, 215023 (2015).

    Article  ADS  Google Scholar 

  34. H-S. Cho, J. Korean Phys. Soc. 66, 1637 (2015).

    Google Scholar 

  35. K. G. Arun, A. Buonanno, G. Faye and E. Ochsner, Phys. Rev. D 79, 104023 (2009).

    Article  ADS  Google Scholar 

  36. J. W. T. Hessels, S. M. Ransom, I. H. Stairs, P. C. C. Freire, V. M. Kaspi and F. Camilo, Science 311, 1901 (2006).

    Article  ADS  Google Scholar 

  37. M. Kramer and N. Wex, Class. Quantum Grav. 26, 073001 (2009).

    Article  ADS  Google Scholar 

  38. P. Ajith, Phys. Rev. D 84, 084037 (2011).

    Article  ADS  Google Scholar 

  39. E. Poisson and C. M. Will, Phys. Rev. D 52, 848 (1995).

    Article  ADS  Google Scholar 

  40. T. Damour, Phys. Rev. D 64, 124013 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  41. L. Santamaria et al., Phys. Rev. D 82, 064016 (2010).

    Article  ADS  Google Scholar 

  42. P. Ajith et al., Phys. Rev. Lett. 106, 241101 (2011).

    Article  ADS  Google Scholar 

  43. S. Khan et al., Phys. Rev. D 93, 044007 (2016).

    Article  ADS  Google Scholar 

  44. H-S. Cho, J. Korean Phys. Soc. 70, 735 (2017).

    Article  ADS  Google Scholar 

  45. M. Campanelli, C. Lousto and Y. Zlochower, Phys. Rev. D 74, 041501 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Suk Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, HS., Lee, CH. Gravitational wave searches for aligned-spin binary neutron stars using nonspinning templates. Journal of the Korean Physical Society 72, 1–5 (2018). https://doi.org/10.3938/jkps.72.1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.72.1

Keywords

Navigation