Skip to main content
Log in

Accuracy in measuring the neutron star mass in the gravitational wave parameter estimation for black hole-neutron star binaries

  • Brief Reports
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Recently, two gravitational wave (GW) signals, named as GW150914 and GW151226, have been detected by the two LIGO detectors. Although both signals were identified as originating from merging black hole (BH) binaries, GWs from systems containing neutron stars (NSs) are also expected to be detected in the near future by the advanced detector network. In this work, we assess the accuracy in measuring the NS mass (M NS) for the GWs from BH-NS binaries adopting the Advanced LIGO sensitivity with a signal-to-noise ratio of 10. By using the Fisher matrix method, we calculate the measurement errors (σ) in M NS assuming a NS mass of 1 ≤ M NS/M ≤ 2 and low-mass BHs with masses in the range of 4 ≤ M BH/M ≤ 10. We use the TaylorF2 waveform model in which the spins are aligned with the orbital angular momentum, but here we only consider the BH spins. We find that the fractional errors (σ/M NS × 100) are in the range of 10% − 50% in our mass region for a given dimensionless BH spin χBH = 0. The errors tend to increase as the BH spin increases, and this tendency is stronger for higher NS masses (or higher total masses). In particular, for the highest mass NSs (M NS = 2 M ), the errors σ can be larger than the true value of M NS if the dimensionless BH spin exceeds ~ 0.6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 061102 (2016).

    Article  ADS  Google Scholar 

  2. B.P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 241102 (2016).

    Article  ADS  Google Scholar 

  3. B. P. Abbott et al.(LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 241103 (2016).

    Article  ADS  Google Scholar 

  4. B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), arXiv:1606.01210 (2016).

  5. J. Abadie et al.(LIGO Scientific Collaboration and Virgo Collaboration), Class. Quantum Grav. 27, 173001 (2010).

    Article  ADS  Google Scholar 

  6. M. Dominik, E. Berti, R. O’Shaughnessy, I. Mandel, K. Belczynski, C. Fryer, D. Holz, T. Bulik and F. Pannarale, Astrophys. J. 806, 263 (2015).

    Article  ADS  Google Scholar 

  7. B. P. Abbott et al.(LIGO Scientific Collaboration and Virgo Collaboration), arXiv:1606.04856 (2016).

  8. C. Kim, B. P. P. Perera and M. A. McLaughlin, MNRAS 448, 928 (2015).

    Article  ADS  Google Scholar 

  9. J. M. Lattimer and M. Prakash, Phy. Repts. 442, 109 (2007).

    Article  ADS  Google Scholar 

  10. M. Prakash, arXiv:1307.0397 (2013).

  11. P. B. Demorest, T. Pennucci, S. M. Ransom, M. S. E. Roberts and J. W. T. Hessels, Nature 467, 1081 (2010).

    Article  ADS  Google Scholar 

  12. J. Antoniadis et al., Science 340, 448 (2013).

    Article  ADS  Google Scholar 

  13. J. Aasi et al.(LIGO Scientific Collaboration, Virgo Collaboration), Phys. Rev. D 88, 062001 (2013).

    Article  ADS  Google Scholar 

  14. H.-S. Cho, J. Korean Phys. Soc. 66, 1637 (2015).

    Article  ADS  Google Scholar 

  15. H.-S. Cho, J. Korean Phys. Soc. 67, 960 (2015).

    Article  ADS  Google Scholar 

  16. B. S. Sathyaprakash and S. V. Dhurandhar, Phys. Rev. D 44, 3819 (1991).

    Article  ADS  Google Scholar 

  17. C. Cutler and E. É. Flanagan, Phys. Rev. D 49, 2658 (1994).

    Article  ADS  Google Scholar 

  18. E. Poisson and C. M. Will, Phys. Rev. D 52, 848 (1995).

    Article  ADS  Google Scholar 

  19. K. G. Arun, A. Buonanno, G. Faye and E. Ochsner, Phys. Rev. D 79, 104023 (2009).

    Article  ADS  Google Scholar 

  20. Advanced LIGO anticipated sensitivity curves, https://dcc.ligo.org/LIGO-T0900288/public.

  21. L. S. Finn, Phys. Rev. D 46, 5236 (1992).

    Article  ADS  Google Scholar 

  22. M. Vallisneri, Phys. Rev. D 77, 042001 (2008).

    Article  ADS  Google Scholar 

  23. P. Jaranowski and A. Królak, Phys. Rev. D 49, 1723 (1994).

    Article  ADS  Google Scholar 

  24. H.-S. Cho, E. Ochsner, R. O’Shaughnessy, C. Kim and C.-H. Lee, Phys. Rev. D 87, 024004 (2013).

    Article  ADS  Google Scholar 

  25. C. P. L. Berry, et al., Astrophys. J. 804, 114 (2015).

    Article  ADS  Google Scholar 

  26. C. L. Rodriguez, B. Farr, W. Farr and I. Mandel, Phys. Rev. D 88, 084013 (2013).

    Article  ADS  Google Scholar 

  27. I. Mandel, C. Berry, F. Ohme, S. Fairhurst and W. M. Farr, Class. Quantum Grav. 31, 155005 (2014).

    Article  ADS  Google Scholar 

  28. H.-S. Cho and C.-H. Lee, Class. Quantum Grav. 31, 235009 (2014).

    Article  ADS  Google Scholar 

  29. R. O’Shaughnessy, B. Farr, H.-S. Cho, C. Kim and C.-H. Lee, Phys. Rev. D 89, 064048 (2014).

    Article  ADS  Google Scholar 

  30. H.-S. Cho, Class. Quantum Grav. 32, 235007 (2015).

    Article  ADS  Google Scholar 

  31. M. Hannam, D. A. Brown, S. Fairhurst, C. L. Fryer and I. W. Harry, Astrophys. J. 766, L14 (2013).

    Article  ADS  Google Scholar 

  32. T. B. Littenberg, B. Farr, C. Coughlin, V. Kalogera and D. E. Holz, Astrophys. J. 807, L24 (2015).

    Article  ADS  Google Scholar 

  33. I. Mandel, C. Haster, M. Dominik and K. Belczynski, MNRAS 450, L85 (2015).

    Article  ADS  Google Scholar 

  34. P. Ajith et al., Class. Quantum Grav. 24, S689 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  35. P. Ajith et al., Phys. Rev. D 77, 104017 (2008); 79, 129901(E) (2009).

    Article  ADS  MathSciNet  Google Scholar 

  36. P. Ajith, Class. Quantum Grav. 25, 114033 (2008).

    Article  ADS  Google Scholar 

  37. P. Ajith et al., Phys. Rev. Lett. 106, 241101 (2011).

    Article  ADS  Google Scholar 

  38. L. Santamaria et al., Phys. Rev. D 82, 064016 (2010).

    Article  ADS  Google Scholar 

  39. S. Khan et al., Phys. Rev. D 93, 044007 (2016).

    Article  ADS  Google Scholar 

  40. M. Hannam et al., Phys. Rev. Lett. 113, 151101 (2014).

    Article  ADS  Google Scholar 

  41. H.-S. Cho, Class. Quantum Grav. 32, 215023 (2015).

    Article  ADS  Google Scholar 

  42. R. N. Lang and S. A. Hughes, Phys. Rev. D 74, 122001 (2006).

    Article  ADS  Google Scholar 

  43. A. Klein, P. Jetzer and M. Sereno, Phys. Rev. D 80, 064027 (2009).

    Article  ADS  Google Scholar 

  44. R. O’Shaughnessy, B. Farr, E. Ochsner, H.-S. Cho, V. Raymond, C. Kim and C.-H. Lee, Phys. Rev. D 89, 102005 (2014).

    Article  ADS  Google Scholar 

  45. K. Chatziioannou, N. Cornish, A. Klein and N. Yunes, Astrophys. J. 798, L17 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Suk Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, HS. Accuracy in measuring the neutron star mass in the gravitational wave parameter estimation for black hole-neutron star binaries. Journal of the Korean Physical Society 69, 884–888 (2016). https://doi.org/10.3938/jkps.69.884

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.69.884

PACS numbers

Keywords

Navigation