Skip to main content
Log in

Estimation of Compton imager using single 3D position-sensitive LYSO scintillator: Monte Carlo simulation

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The performance of a Compton imager using a single three-dimensional position-sensitive LYSO scintillator detector was estimated using a Monte Carlo simulation. The Compton imager consisted of a single LYSO scintillator with a pixelized structure. The size of the scintillator and each pixel were 1.3 × 1.3 × 1.3 cm3 and 0.3 × 0.3 × 0.3 cm3, respectively. The order of γ-ray interactions was determined based on the deposited energies in each detector. After the determination of the interaction sequence, various types of reconstruction algorithms such as simple back-projection, filtered back-projection, and list-mode maximum-likelihood expectation maximization (LM-MLEM) were applied and compared with each other in terms of their angular resolution and signal-to-noise ratio (SNR) for several γ-ray energies. The LM-MLEM reconstruction algorithm exhibited the best performance for Compton imaging in maintaining high angular resolution and SNR. The two sources of 137Cs (662 keV) could be distinguishable if they were more than 17° apart. The reconstructed Compton images showed the precise position and distribution of various radiation isotopes, which demonstrated the feasibility of the monitoring of nuclear materials in homeland security and radioactive waste management applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Singh and D. Doria, Med. Phys. 10, 421 (1983).

    Article  Google Scholar 

  2. M. Singh and D. Doria, Med. Phys. 10, 428 (1983).

    Article  Google Scholar 

  3. M-H. Richard, M. Chevallier, D. Dauvergne, N. Freud, P. Henriqet, F. Le Foulher, J. M. Lètang, G. Montarou, C. Ray, F. Roellinghoff, E. Testa and A. H. Walenta, IEEE Trans. Nucl. Sci. 58, 87 (2011).

    Article  ADS  Google Scholar 

  4. Y. F. Du, Z. He, G. F. Knoll, D. K. Wehe and W. Li, Nucl. Instrum. Meth. A 457, 203 (2001).

    Article  ADS  Google Scholar 

  5. C. E. Lehner, Z. He and F. Zhang, IEEE Trans. Nucl. Sci. 51, 1618 (2004).

    Article  ADS  Google Scholar 

  6. D. Xu, Z. He, C. E. Lehner and F. Zhang, Proc. SPIE. 5540, 144 (2004).

    Article  ADS  Google Scholar 

  7. W. Lee, A. Bolotnikov, T. Lee, G. Camarda, Y. Cui, R. Gul, A. Hossain, R. Utpal, G. Yang and R. James, IEEE Trans. Nucl. Sci. 63, 259 (2016).

    Article  ADS  Google Scholar 

  8. E. Yoshida, Y. Hirano, H. Tashima, N. Inadama, F. Nishikido, T. Moriya, T. Omura, M. Watanabe, H. Murayama and T. Yamaya, Nucl. Instrum. Meth. A 723, 83 (2013).

    Article  ADS  Google Scholar 

  9. A. Kishimoto, J. Kataoka, T. Kato, T. Miura, T. Nakamori, K. Kamada, S. Nakamura, K. Sato, Y. Ishikawa, K. Yamamura, N. Kawabata and S. Yamamoto, IEEE Trans. Nucl. Sci. 60, 38 (2013).

    Article  ADS  Google Scholar 

  10. J. Kataoka, A. Kishimoto, T. Nishiyama, T. Fujita, K. Takeuchi, T. Kato, T. Nakamori, S. Ohsuka, S. Nakamura, M. Hirayanagi, S. Adachi, T. Uchiyama and K. Yamamoto, Nucl. Instrum. Meth. A 732, 403 (2013).

    Article  ADS  Google Scholar 

  11. K. Takeuchi, J. Kataoka, T. Nishiyama, T. Fujita, A. Kishimoto, S. Ohsuka, S. Nakamura, S. Adachi, M. Hirayanagi, T. Uchiyama, Y. Ishikawa and T. Kato, Nucl. Instrum. Meth. A 765, 187 (2014).

    Article  ADS  Google Scholar 

  12. G. F. Knoll, Radiation Detection and Measurement, 4th ed. (Wiley, New York, 2010), Chap. 10, p. 336.

    Google Scholar 

  13. Y. F. Du, Z. He, G. F. Knoll and D. K. Wehe, W. Li, Nucl. Instrum. Meth. A 457, 203 (2001).

    Article  ADS  Google Scholar 

  14. L. C. Parra, IEEE Trans. Nucl. Sci. 47, 1543 (2000).

    Article  ADS  Google Scholar 

  15. D. Xu and Z. He, IEEE Trans. Nucl. Sci. 53, 2787 (2006).

    Article  ADS  Google Scholar 

  16. K. Lange and R. Carson, J. Comput. Assist. Tomogr. 8, 306 (1984).

    Google Scholar 

  17. S. J. Wilderman, N. H. Clinthorne, J. A. Fessler and W. L. Rogers, Proc. IEEE Nucl. Sci. Symp. Conf. Rec. 3, 1716 (1998).

    Google Scholar 

  18. Y. F. Yang, Y. Gono, S. Motomura, S. Enomoto and Y. Yano, IEEE Trans. Nucl. Sci. 48, 656 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wonho Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, T., Lee, H., Kim, Y. et al. Estimation of Compton imager using single 3D position-sensitive LYSO scintillator: Monte Carlo simulation. Journal of the Korean Physical Society 71, 70–76 (2017). https://doi.org/10.3938/jkps.71.70

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.71.70

Keywords

Navigation