Skip to main content

Prototypes of SiPM-GAGG Scintillator Compton Cameras

  • Chapter
  • First Online:
Advanced X-Ray Radiation Detection:

Abstract

Compton camera is capable of visualizing the distribution of radioactivity based on the Compton scattering kinematics as electronic collimation instead of mechanical collimators. Compton camera can be applied in nuclear accident emergency response, radioactivity decontamination, homeland security, etc. Especially after the 2011 Fukushima accident, more and more researches focus on Compton camera and various approaches have been developed for specific applications. Thanks to recent developments of SiPM and novel GAGG:Ce scintillators, a series of SiPM-GAGG scintillator Compton camera prototypes have been constructed. Angular resolution and efficiency are the two key performances of a Compton camera, and generally the angular resolution is poor when the efficiency is high and vice versa. The angular resolution is the quadratic summation of contributions of energy resolution, Doppler broadening effect, and geometry parameters. Geometry and energy resolution are the main contributions for SiPM-GAGG scintillator Compton cameras. The efficiency can be as high as 1% with thick and close detectors. Simple back projection (SBP), filtered back projection (FBP), and maximum likelihood expectation maximization (MLEM) are the three most widely used reconstruction algorithms for Compton cameras. Some SiPM-GAGG scintillator Compton cameras are reviewed, including prototypes with individual readout electronics, charge sharing resistive/capacitive multiplexing readout electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Takeda, A. Harayama, Y. Ichinohe, et al., “A portable Si/CdTe Compton camera and its applications to the visualization of radioactive substances”, Nucl. Instrum. Meth. A, vol. 787, pp. 207-211, 2015.

    Article  Google Scholar 

  2. M. Galloway, A. Zoglauer, M. Amman, et al., “Simulation and detector response for the High Efficiency Multimode Imager”, Nucl. Instrum. Meth. A, vol. 652, no. 1, pp. 641-645, 2011.

    Google Scholar 

  3. L. Mihailescu, K. M. Vetter, M. T. Burks, et al., “SPEIR: A Ge Compton camera”, Nucl. Instrum. Meth. A, vol. 570, pp. 89-100, 2007.

    Article  Google Scholar 

  4. A. M. L. MacLeod, P. J. Boyle, P. R. B. Saull, et al., “Development of a Compton imager based on scintillator bars”, 2011 IEEE Nuclear Science Symposium Conference Record, 2011.

    Google Scholar 

  5. A. M. L. MacLeoda, P. J. Boylea, D. S. Hannaa, et al., “Development of a Compton imager based on bars of scintillator”, Nucl. Instrum. Meth. A, vol. 767, pp. 397-406, 2014.

    Article  Google Scholar 

  6. P. R. B. Saulla, L. E. Sinclairb, H. C. J. Seywerdb, et al., “First demonstration of a Compton gamma imager based on silicon photomultipliers”, Nucl. Instrum. Meth. A, vol. 679, pp. 89-96, 2012.

    Article  Google Scholar 

  7. M. Kagayaa, H. Katagiri, R. Enomoto, et al., “Development of a low-cost-high-sensitivity Compton camera using CsI (Tl) scintillators (γI)”, Nucl. Instrum. Meth. A, vol. 804, pp. 25-32, 2015.

    Article  Google Scholar 

  8. L. Sinclair, P. Saull, D. Hanna, et al., “Silicon Photomultiplier-Based Compton Telescope for Safety and Security (SCoTSS)”, IEEE Trans. Nucl. Sci., vol. 61, no. 5, pp. 2745-2752, 2014.

    Google Scholar 

  9. G. Llosá, J. Cabello, S. Callier, et al., “First Compton telescope prototype based on continuous LaBr3-SiPM detectors”, Nucl. Instrum. Meth. A, vol. 718, pp. 130-133, 2013.

    Article  Google Scholar 

  10. G. Llosa, J. Cabello, J. E. Gillam, et al., “Second LaBr3 Compton telescope prototype”, presented at the 2013 3rd International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and Their Applications, 2013.

    Google Scholar 

  11. A. Iltis, H. Snoussi, L. Rodrigues de Magalhaes, et al., “Temporal Imaging CeBr3 Compton Camera: A New Concept for Nuclear Decommissioning and Nuclear Waste Management”, presented at the Advancements in Nuclear Instrumentation Measurement Methods and their Applications, 2018.

    Google Scholar 

  12. J. Kataoka, A. Kishimoto, T. Nishiyama, et al., “Handy Compton camera using 3D position-sensitive scintillators coupled with large-area monolithic MPPC arrays”, Nucl. Instrum. Meth. A, vol. 732, pp. 403-407, 2013.

    Article  Google Scholar 

  13. J. Jiang, K. Shimazoe, Y. Nakamura, et al., “A prototype of aerial radiation monitoring system using an unmanned helicopter mounting a GAGG scintillator Compton camera”, J Nucl Sci Technol, vol. 53, no. 7, pp. 1067-1075, 2016.

    Google Scholar 

  14. Y. Shikaze, Y. Nishizawa, Y. Sanada, et al., “Field test around Fukushima Daiichi nuclear power plant site using improved Ce: Gd3 (Al, Ga) 5O12 scintillator Compton camera mounted on an unmanned helicopter”, J Nucl Sci Technol, pp. 1-12, 2016.

    Google Scholar 

  15. A. Kishimoto, J. Kataoka, A. Koide, et al., “Development of a compact scintillator-based high-resolution Compton camera for molecular imaging”, Nucl. Instrum. Meth. A, vol. 845, pp. 656-659, 2017.

    Article  Google Scholar 

  16. J.-P. Zhang, X.-z. Liang, J.-l. Cai, et al., “Prototype of an array SiPM-based scintillator Compton camera for radioactive materials detection”, Radiation Detection Technology and Methods, vol. 3, no. 17, pp. 1-12, 2019.

    Google Scholar 

  17. S. Jiang, J. Lu, S. Meng, et al., “A prototype of SiPM-based scintillator Compton camera with capacitive multiplexing readout”, J Instrum, vol. 16, no. 01, pp. P01027-P01027, 2021.

    Google Scholar 

  18. K. Kamada, T. Yanagida, T. Endo, et al., “2 inch diameter single crystal growth and scintillation properties of Ce:Gd3Al2Ga3O12”, J. Cryst. Growth, vol. 352, no. 1, pp. 88-90, 2012.

    Google Scholar 

  19. J. Iwanowska, L. Swiderski, T. Szczesniak, et al., “Performance of cerium-doped Gd3Al2Ga3O12(GAGG:Ce) scintillator in gamma-ray spectrometry”, Nucl. Instrum. Meth. A, vol. 712, pp. 34-40, 2013.

    Article  Google Scholar 

  20. G. Matscheko, G. A. Carlsson, and R. Ribberfors, “Compton spectroscopy in the diagnostic X-ray energy range: II. Effects of scattering material and energy resolution”, Phys Med Biol, vol. 34, no. 2, pp. 199-208, 1989.

    Google Scholar 

  21. F. Biggs, L. B. Mendelsohn, and J. B. Mann, “Hartree—Fock Compton profiles for the elements”, Atomic data and nuclear data tables, vol. 16, pp. 201-309, 1975.

    Google Scholar 

  22. C. E. Ordonez, W. Chang, and A. Bolozdynya, “Angular uncertainties due to geometry and spatial resolution in Compton cameras”, IEEE Trans. Nucl. Sci., vol. 46, no. 4, pp. 1142-1147, 1999.

    Google Scholar 

  23. Y. F. Du, Z. He, G. F. Knoll, et al., “Evaluation of a Compton scattering camera using 3-D position sensitive CdZnTe detectors”, Nucl. Instrum. Meth. A, vol. 457, pp. 203-211, 2001.

    Article  Google Scholar 

  24. H. Hirayama, Y. Namito, W. R. Nelson, et al., “The EGS5 code system”, United States. Department of Energy, 2005.

    Google Scholar 

  25. S. Agostinelli, J. Allison, K. Amako, et al., “Geant4-a simulation toolkit”, Nucl. Instrum. Meth. A, vol. 506, no. 3, pp. 250-303, 2003.

    Google Scholar 

  26. L. C. Parra, “Reconstruction of cone-beam projections from Compton scattered data”, IEEE Trans. Nucl. Sci., vol. 47, no. 4, pp. 1543-1550, 2000.

    Google Scholar 

  27. T. Tomitani and M. Hirasawa, “Image reconstruction from limited angle Compton camera data”, Phys Med Biol, vol. 47, no. 12, pp. 2129-2145, 2002.

    Google Scholar 

  28. T. Tomitani and M. Hirasawa, “Analytical image reconstruction of cone-beam projections from limited-angle Compton camera data”, IEEE Trans. Nucl. Sci., vol. 50, no. 5, pp. 1602-1608, 2003.

    Google Scholar 

  29. J. P. Sullivan, S. R. Tornga, and M. W. Rawool-Sullivan, “Extended radiation source imaging with a prototype Compton imager”, Appl Radiat Isotopes, vol. 67, pp. 617-624, 2009.

    Article  Google Scholar 

  30. K. Shimazoe, M. Yoshino, Y. Ohshima, et al., “Development of simultaneous PET and Compton imaging using GAGG-SiPM based pixel detectors”, Nucl. Instrum. Meth. A, vol. 954, no. 1, p. 161499, 2020.

    Google Scholar 

  31. T. Y. Song, H. Wu, S. Komarov, et al., “A sub-millimeter resolution PET detector module using a multi-pixel photon counter array”, Phys Med Biol, vol. 55, pp. 2573-2587, 2010.

    Article  Google Scholar 

  32. D. Stratos, G. Maria, F. Eleftherios, et al., “Comparison of three resistor network division circuits for the readout of 4 × 4 pixel SiPM arrays”, Nucl. Instrum. Meth. A, vol. 702, pp. 121-125, 2013.

    Article  Google Scholar 

  33. Z. Wang, X. Sun, K. Lou, et al., “Design, development and evaluation of a resistor-based multiplexing circuit for a 20 × 20 SiPM array”, Nucl. Instrum. Meth. A, vol. 816, pp. 40-46, 2016.

    Article  Google Scholar 

  34. H.-J. Choe, Y. Choi, W. Hu, et al., “Development of capacitive multiplexing circuit for SiPM-based time-of-flight (TOF) PET detector”, Phys Med Biol, vol. 62, no. 7, pp. N120-N133, 2017.

    Google Scholar 

  35. X. Sun, K. Lou, and Y. Shao, “Capacitor based multiplexing circuit for silicon photomultiplier array readout”, in 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Seattle, US, 2014.

    Google Scholar 

  36. K. Shimazoe, H. Takahashi, B. Shi, et al., “Dynamic Time Over Threshold Method”, IEEE Trans. Nucl. Sci., vol. 59, no. 6, pp. 3213-3217, 2012.

    Google Scholar 

  37. Y. Nakamura, K. Shimazoe, and H. Takahashi, “Silicon Photomultiplier-Based Multi-Channel Gamma Ray Detector Using the Dynamic Time-Over-Threshold Method”, J Instrum, 2016.

    Google Scholar 

  38. T. Nakamori, T. Kato, J. Kataoka, et al., “Development of a gamma-ray imager using a large area monolithic 4×4 MPPC array for a future PET scanner”, J Instrum, vol. 7, no. 01, p. C01083, 2012.

    Google Scholar 

  39. K. Takeuchi, J. Kataoka, T. Nishiyama, et al., ““Stereo Compton cameras” for the 3-D localization of radioisotopes”, Nucl. Instrum. Meth. A, 2014.

    Google Scholar 

  40. H.-j. Choe, Y. Choi, D. J. Kwak, et al., “Prototype time-of-flight PET utilizing capacitive multiplexing readout”, Nucl. Instrum. Meth. A, vol. 921, pp. 43-49, 2019.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yan, X. (2023). Prototypes of SiPM-GAGG Scintillator Compton Cameras. In: Iniewski, K.(. (eds) Advanced X-Ray Radiation Detection: . Springer, Cham. https://doi.org/10.1007/978-3-030-92989-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92989-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92988-6

  • Online ISBN: 978-3-030-92989-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics