Skip to main content
Log in

Recent progress in molecular simulation of nanoporous graphene membranes for gas separation

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

If an ideal membrane for gas separation is to be obtained, the following three characteristics should be considered: the membrane should be as thin as possible, be mechanically robust, and have welldefined pore sizes. These features will maximize its solvent flux, preserve it from fracture, and guarantee its selectivity. Graphene is made up of a hexagonal honeycomb lattice of carbon atoms with sp 2 hybridization state forming a one-atom-thick sheet of graphite. Following conversion of the honeycomb lattices into nanopores with a specific geometry and size, a nanoporous graphene membrane that offers high efficiency as a separation membrane because of the ultrafast molecular permeation rate as a result of its one-atom thickness is obtained. Applications of nanoporous graphene membranes for gas separation have been receiving remarkably increasing attention because nanoporous graphene membranes show promising results in this area. This review focuses on the recent advances in nanoporous graphene membranes for applications in gas separation, with a major emphasis on theoretical works. The attractive properties of nanoporous graphene membranes introduce make them appropriate candidates for gas separation and gas molecular-sieving processes in nanoscale dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Maqsood, J. Pal, D. Turunawarasu, A. J. Pal and S. Ganguly, Korean J. Chem. Eng. 31, 1120 (2014).

    Article  Google Scholar 

  2. P. C. Wankat and K. P. Kostroski, Sep. Sci. Technol. 46, 1539 (2011).

    Article  Google Scholar 

  3. F. V. Lopes, C. A. Grande and A. E. Rodrigues, Chem. Eng. Sci. 66, 303 (2011).

    Article  Google Scholar 

  4. M. F. Hasan, R. C. Baliban, J. A. Elia and C. A. Floudas, Ind. Eng. Chem. Res. 51, 15665 (2012).

    Article  Google Scholar 

  5. M. A. Aroon, A. F. Ismail, T. Matsuura and M. M. Montazer-Rahmati, Sep. Purif. Technol. 75, 229 (2010).

    Article  Google Scholar 

  6. D. F. Sanders, Z. P. Smith, R. Guo, L. M. Robeson, J. E. McGrath, D. R. Paul and B. D. Freeman, Polymer 54, 4729 (2013).

    Article  Google Scholar 

  7. Y. Huang, R. W. Baker and L. M. Vane, Ind. Eng. Chem. Res. 49, 3760 (2010).

    Article  Google Scholar 

  8. H. W. Kim, H. W. Yoon, S-M. Yoon, B. M. Yoo, B. K. Ahn, Y. H. Cho, H. J. Shin, H. Yang, U. Paik and S. Kwon, Science 342, 9 (2013).

    Google Scholar 

  9. W. J. Lau, A. F. Ismail, N. Misdan and M. A. Kassim, Desalination 287, 190 (2012).

    Article  Google Scholar 

  10. O-K. Park, J-Y. Hwang, M. Goh, J. H. Lee, B-C. Ku and N-H. You, Macromolecules 46, 3505 (2013).

    Article  ADS  Google Scholar 

  11. W. Yuan, J. Chen and G. Shi, Mater. Today 17, 77 (2014).

    Article  Google Scholar 

  12. S. P. Koenig, L. Wang, J. Pellegrino and J. S. Bunch, Nat. Nanotechnol. 7, 728 (2012).

    Article  ADS  Google Scholar 

  13. M. T. Ravanchi, T. Kaghazchi and A. Kargari, Desalination 235, 199 (2009).

    Article  Google Scholar 

  14. H. Strathmann, AIChE J. 47, 1077 (2001).

    Article  Google Scholar 

  15. M. Pera-Titus, Chem. Rev. 114, 1413 (2013).

    Article  Google Scholar 

  16. P. V. X. Hung, S-H. Cho and S-H. Moon, Desalination 247, 33 (2009).

    Article  Google Scholar 

  17. P. Alizadeh and V. Khani, J. Nanostruct 4, 45 (2014).

    Google Scholar 

  18. F. Han, Z. Zhong, Y. Yang, W. Wei, F. Zhang, W. Xing and Y. Fan, J. Eur. Ceram. Soc. 36, 3909 (2016).

    Article  Google Scholar 

  19. Y. Wang, C. He, W. Xing, F. Li, L. Tong, Z. Chen, X. Liao and M. Steinhart, Adv. Mater. 22, 2068 (2010).

    Article  Google Scholar 

  20. A. Marković, D. Stoltenberg, D. Enke, E-U. Schlünder and A. Seidel-Morgenstern, J. Membr. Sci. 336, 17 (2009).

    Article  Google Scholar 

  21. Y-T. Lai, M. Sato, S. Ohta, K. Akamatsu, S-I. Nakao, Y. Sakai and T. Ito, Colloids Surf. B 127, 1 (2015).

    Article  Google Scholar 

  22. H. Beydaghi, M. Javanbakht and A. Badiei, J. Nanostruct. Chem. 4, 97 (2014).

    Article  Google Scholar 

  23. S. Saxena and U. Saxena, Int. Nano Lett. 6, 223 (2016).

    Article  Google Scholar 

  24. Y. Huang, T. C. Merkel and R. W. Baker, J. Membr. Sci. 463, 33 (2014).

    Article  Google Scholar 

  25. H. R. Lee, M. Kanezashi, Y. Shimomura, T. Yoshioka and T. Tsuru, AIChE J. 57, 2755 (2011).

    Article  Google Scholar 

  26. J. Wijmans and R. Baker, J. Membr. Sci. 107, 1 (1995).

    Article  Google Scholar 

  27. J. C. White, P. K. Dutta, K. Shqau and H. Verweij, Langmuir 26, 10287 (2010).

    Article  Google Scholar 

  28. N. Kosinov, J. Gascon, F. Kapteijn and E. J. Hensen, J. Membr. Sci. 499, 65 (2016).

    Article  Google Scholar 

  29. M. Anbia and S. Khoshbooei, J. Nanostruct. Chem. 5, 139 (2015).

    Article  Google Scholar 

  30. A. Ghaffari, M. S. Tehrani, S. W. Husain, M. Anbia and P. A. Azar, J. Nanostruct. Chem. 4, 114 (2014).

    Article  Google Scholar 

  31. W. Yantasee, R. D. Rutledge, W. Chouyyok, V. Sukwarotwat, G. Orr, C. L. Warner, M. G. Warner, G. E. Fryxell, R. J. Wiacek and C. Timchalk, ACS Appl. Mater. Interfaces 2, 2749 (2010).

    Article  Google Scholar 

  32. S. Kim and Y. M. Lee, Prog. Polym. Sci. 43, 1 (2015).

    Article  Google Scholar 

  33. X. Weng, J. E. Baez, M. Khiterer, M. Y. Hoe, Z. Bao and K. J. Shea, Angew. Chem., Int. Ed. 54, 11214 (2015).

    Article  Google Scholar 

  34. M. Buonomenna, W. Yave and G. Golemme, RSC Adv. 2, 10745 (2012).

    Article  Google Scholar 

  35. M. Anbia and M. Faryadras, J. Nanostruct. Chem. 5, 357, (2015).

    Article  Google Scholar 

  36. A. Sabetghadam, B. Seoane, D. Keskin, N. Duim, T. Rodenas, S. Shahid, S. Sorribas, C. L. Guillouzer, G. Clet and C. Tellez, Adv. Funct. Mater. 26, 3154 (2016).

    Article  Google Scholar 

  37. P. Gorgojo, D. Sieffert, C. Staudt, C. Tellez and J. Coronas, J. Membr. Sci. 411, 146 (2012).

    Article  Google Scholar 

  38. R. W. Baker, Ind. Eng. Chem. Res. 41, 1393 (2002).

    Article  Google Scholar 

  39. S. M. Fatemi and M. Foroutan, J. Nanostruct. Chem. 6, 29 (2016).

    Article  Google Scholar 

  40. S. M. Fatemi and M. Foroutan, J. Nanostruct. Chem. 5, 243 (2015).

    Article  Google Scholar 

  41. H. Sha and R. Faller, Comput. Mater. Sci. 114, 160 (2016).

    Article  Google Scholar 

  42. S. Fatemi and M. Foroutan, Int. J. Environ. Sci. Technol. 13, 457 (2016).

    Article  Google Scholar 

  43. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science 306, 666 (2004).

    Article  ADS  Google Scholar 

  44. P. Avouris, Nano Lett. 10, 4285 (2010).

    Article  ADS  Google Scholar 

  45. M. S. A. Bhuyan, M. N. Uddin, M. M. Islam, F. A. Bipasha and S. S, Hossain, Int. Nano Lett. 6, 65 (2016).

    Article  Google Scholar 

  46. L. Rodrigoa, P. Poua and R. Péreza, Carbon 103, 200 (2016).

    Article  Google Scholar 

  47. C. Dean, A. Young, P. Cadden-Zimansky, L. Wang, H. Ren, K. Watanabe, T. Taniguchi, P. Kim and J. Hone, K. Nat. Phys. 7, 693 (2011).

    Article  Google Scholar 

  48. E. V. Castro, H. Ochoa, M. Katsnelson, R. Gorbachev, D. Elias, K. Novoselov, A. Geim and F. Guinea, Phys. Rev. Lett. 105, 266601 (2010).

    Article  ADS  Google Scholar 

  49. A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe and T. Taniguchi, Nano Lett. 11, 2396 (2011).

    Article  ADS  Google Scholar 

  50. K. Novoselov, Rev. Mod. Phys. 83, 837 (2011).

    Article  ADS  Google Scholar 

  51. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  ADS  Google Scholar 

  52. C. Lee, X. Wei, J. W. Kysar and J. Hone, Science 321, 385 (2008).

    Article  ADS  Google Scholar 

  53. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau, Nano Lett. 8, 902 (2008).

    Article  ADS  Google Scholar 

  54. R. Murali, Y. Yang, K. Brenner, T. Beck and J. D. Meindl, Appl. Phys. Lett. 94, 243114 (2009).

    Article  ADS  Google Scholar 

  55. R. Shishir and D. Ferry, J. Phys.: Condens. Matter 21, 232204 (2009).

    ADS  Google Scholar 

  56. T. Feng, X. Ruan, Z. Ye and B. Cao, Phys. Rev. B 91, 224301 (2015).

    Article  ADS  Google Scholar 

  57. S. P. Surwade, S. N. Smirnov, I. V. Vlassiouk, R. R. Unocic, G. M. Veith, S. Dai and S. M. Mahurin, Nat. Nanotechnol. 10, 459 (2015).

    Article  ADS  Google Scholar 

  58. R. Majidi and A. R. Karami, J. Nanostruct 4, 1 (2014).

    Google Scholar 

  59. C. Sun, B. Wen and B. Bai, Sci. Bull. 60, 1807 (2015).

    Article  Google Scholar 

  60. P. Sun, K. Wang and H. Zhu, Adv. Mater. 28, 2287 (2016).

    Article  Google Scholar 

  61. S. C. O’Hern, D. Jang, S. Bose, J-C. Idrobo, Y. Song, T. Laoui, J. Kong and R. Karnik, Nano Lett. 15, 3254 (2015).

    Article  ADS  Google Scholar 

  62. J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. Van Der Zande, J. M. Parpia, H. G. Craighead and P. L. McEuen, Nano Lett. 8, 2458 (2008).

    Article  ADS  Google Scholar 

  63. L. Tsetseris and S. Pantelides, Carbon 67, 58 (2014).

    Article  Google Scholar 

  64. G. Liu, W. Jin and N. Xu, Chem. Soc. Rev. 44, 5016 (2015).

    Article  Google Scholar 

  65. K. Celebi, J. Buchheim, R.M. Wyss, A. Droudian, P. Gasser, I. Shorubalko, J-I. Kye, C. Lee and H. G. Park, Science 344, 289 (2014).

    Article  ADS  Google Scholar 

  66. S. C. O’Hern, M. S. Boutilier, J-C. Idrobo, Y. Song, J. Kong, T. Laoui, M. Atieh and R. Karnik, Nano Lett. 14, 1234 (2014).

    Article  ADS  Google Scholar 

  67. Y. Han, Z. Xu and C. Gao, Adv. Funct. Mater. 23, 3693 (2013).

    Article  Google Scholar 

  68. J. Schrier and J. McClain, J. Chem. Phys. Lett. 521, 118 (2012).

    Article  ADS  Google Scholar 

  69. Y. Wang, Q. Yang, J. Li, J. Yang and C. Zhong, Phys. Chem. Chem. Phys. 18, 8352 (2016).

    Article  Google Scholar 

  70. G. Liu, W. Jin and N. Xu, Angew. Chem. Int. Ed. 55, 13384 (2016).

    Article  Google Scholar 

  71. M. Boutilier, R. Karnik and N. Hadjiconstantinou, Prog. Mater. Sci. 56, 1178 (2011).

    Article  Google Scholar 

  72. D. Cohen-Tanugi and J. C. Grossman, Nano Lett. 12, 3602 (2012).

    Article  ADS  Google Scholar 

  73. D. Cohen-Tanugi and J. C. Grossman, J. Chem. Phys. 141, 074704 (2014).

    Article  ADS  Google Scholar 

  74. D. Konatham, J. Yu, T. A. Ho and A. Striolo, Langmuir 29, 11884 (2013).

    Article  Google Scholar 

  75. C. Sun, M. S. Boutilier, H. Au, P. Poesio, B. Bai, R. Karnik and N. G. Hadjiconstantinou, Langmuir 30, 675 (2014).

    Article  Google Scholar 

  76. L. W. Drahushuk andM. S. Strano, Langmuir 28, 16671 (2012).

    Article  Google Scholar 

  77. M. Foroutan and S. M. Fatemi, Encyclopedia of Nanoscience and Nanotechnology, edited by H. S. Nalwa (American Scientific Publishers, Valencia, CA, 2017).

    Google Scholar 

  78. P. Shao, M. M. Dal-Cin, M. D. Guiver and A. Kumar, J. Membr. Sci. 427, 451 (2013).

    Article  Google Scholar 

  79. F. Ahmad, K. Lau, A. Shariff and G. Murshid, Comput. Chem. Eng. 36, 119 (2012).

    Article  Google Scholar 

  80. L. Jiang, Z. Fan, Nanoscale 6, 1922 (2014).

    Article  ADS  Google Scholar 

  81. D-E. Jiang, V. R. Cooper and S. Dai, Nano Lett. 9, 4019 (2009).

    Article  ADS  Google Scholar 

  82. J. Lee and N. Aluru, J. Membr. Sci. 428, 546 (2013).

    Article  Google Scholar 

  83. G. Lei, C. Liu, H. Xie and F. Song, Chem. Phys. Lett. 599, 127 (2014).

    Article  ADS  Google Scholar 

  84. D. Li, W. Hu, J. Zhang, H. Shi, Q. Chen, T. Sun, L. Liang and Q. Wang, J. Phys. Chem. C 119, 25559 (2015).

    Article  Google Scholar 

  85. A. W. Hauser and P. Schwerdtfeger, J. Phys. Chem. Let. 3, 209 (2012).

    Article  Google Scholar 

  86. S. Blankenburg, M. Bieri, R. Fasel, K. Müllen, C. A. Pignedoli and D. Passerone, Small 6, 2266 (2010).

    Article  Google Scholar 

  87. R. P. Wesoowski and A. P. Terzyk, Phys. Chem. Chem. Phys. 13, 17027 (2011).

    Article  Google Scholar 

  88. M. Arabieh, S. M. Fatemi and H. Sepehrian, Chem. Prod. Process Model. 11, 3 (2016).

    Google Scholar 

  89. H. Liu, S. Dai and D-E. Jiang, Nanoscale 5, 9984 (2013).

    Article  ADS  Google Scholar 

  90. H. Liu, S. Dai and D-E. Jiang, Solid State Commun. 175, 101 (2013).

    Article  ADS  Google Scholar 

  91. H. Liu, Z. Chen, S. Dai and D-E. Jiang, Solid State Chem. 224, 2 (2015).

    Article  ADS  Google Scholar 

  92. H. Du, J. Li, J. Zhang, G. Su, X. Li and Y. Zhao, J. Phys. Chem. C 115, 23261 (2011).

    Article  Google Scholar 

  93. K. Nieszporek and M. Drach, Phys. Chem. Chem. Phys. 17, 1018 (2015).

    Article  Google Scholar 

  94. J. Xu, P. Sang, W. Xing, Z. Shi, L. Zhao, W. Guo and Z. Yan, Nanoscale Res. Lett. 10, 1 (2015).

    Article  Google Scholar 

  95. C. Sun, B. Wen and B. Bai, Chem. Eng. Sci. 138, 616 (2015).

    Article  Google Scholar 

  96. T. Wu, Q. Xue, C. Ling, M. Shan, Z. Liu, Y. Tao and X. Li, J. Phys. Chem. C 118, 7369 (2014).

    Article  Google Scholar 

  97. Q. Xue, M. Shan, Y. Tao, Z. Liu, C. Ling and Y. Du, Chin. Sci. Bull. 59, 3919 (2014).

    Article  Google Scholar 

  98. S. M. Fatemi, H. Sepehrian and M. Arabieh, Eur. Phys. J. Plus 131, 1 (2016).

    Article  Google Scholar 

  99. S. M. Fatemi, M. Arabieh and H. Sepehrian, Carbon Lett. 16, 183 (2015).

    Article  Google Scholar 

  100. S. M. Fatemi, H. Sepehrian and M. Arabieh, J. Adv. Phys. 6, 10 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mahmood Fatemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatemi, S.M., Baniasadi, A. & Moradi, M. Recent progress in molecular simulation of nanoporous graphene membranes for gas separation. Journal of the Korean Physical Society 71, 54–62 (2017). https://doi.org/10.3938/jkps.71.54

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.71.54

Keywords

Navigation