Skip to main content

Advertisement

Log in

Performance enhancement and energy reduction using hybrid cryogenic distillation networks for purification of natural gas with high CO2 content

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A novel concept of hybrid cryogenic distillation network has been explored which maximizes the benefits of both desublimation or solid-vapor based separation as well as distillation or vapor-liquid equilibrium based separation during the separation of carbon dioxide from methane or natural gas. Process network synthesis has been performed for four case studies with high carbon dioxide (72 mole%) and medium carbon dioxide (50 mole%) natural gas feed streams. The benefits of optimal locations for cryogenic packed beds were investigated. A conventional cryogenic network consisting of multiple distillation columns with butane as additive for extractive distillation was also studied and presented in this paper. Process modeling of cryogenic distillation network with MESH equations was attempted using an integrated dual loop (C+3) convergence and the results were compared with Aspen Plus simulator for benchmarking. The prediction of solidification region was employed using experimental data from literature to avoid solidification regions in the column. The proposed hybrid cryogenic distillation network showed promising potential for energy and size reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refrerences

  1. J.G. Speight, Natural Gas A Basic Handbook, Gulf Publishing Company, Houston, Texas (2007).

    Google Scholar 

  2. N. H. Darman and A. R. B. Harum, Technical challenges and solutions on natural gas development in Malaysia, in: The petroleum policy and management project, 4th Workshop of the China-Sichuan Basin Study, Beijing, China (2006).

    Google Scholar 

  3. D. Dortmundt and K. Doshi, Recent developments in CO 2 removal membrane technology, UOP LLC, des Plaines (1999).

    Google Scholar 

  4. H.G. Donnelly and D. L. Katz, Ind. Eng. Chem., 46, 511 (1954).

    Article  CAS  Google Scholar 

  5. J. Brewer and F. Kurata, AIChE J., 4, 317 (1958).

    Article  CAS  Google Scholar 

  6. H. Li, J. P. Jakobsen, Ø. Wilhelmsen and J. Yan, Appl. Energy, 88, 3567 (2011).

    Article  CAS  Google Scholar 

  7. J. A. Davis, N. Rodewald and F. Kurata, AIChE J., 8, 537 (1962).

    Article  CAS  Google Scholar 

  8. A. S. Holmes and J.M. Ryan, Cryogenic distillative separation of acid gases from methane, US Patent (1982).

    Google Scholar 

  9. A. S. Holmes, J. M. Ryan, B. C. Price and R. E. Styring, Pilot tests prove out cryogenic acid-gas/hydrocarbon separation processes, in: 61st Annual GPA Convention, Dallas, TX, March 15–17 (1982).

    Google Scholar 

  10. D. Berstad, P. Nekså and R. Anantharaman, Energy Procedia, 26, 41 (2012).

    Article  CAS  Google Scholar 

  11. J.A. Valencia and R. D. Denton, Method of separating acid gases, particularly Carbon dioxide from methane by the addition of a light gas such as helium, US Patent (1983).

    Google Scholar 

  12. T. D. Atkinson, J. T. Lavin and D. T. Linnett, Separation of gaseous in: mixtures, US Patent (1988).

    Google Scholar 

  13. P. S. Northrop and J. A. Valencia, Energy Procedia, 1, 171 (2009).

    Article  CAS  Google Scholar 

  14. B. T. Kelley, J. A. Valencia, P. S. Northrop and C. J. Mart, Energy Procedia, 4, 824 (2011).

    Article  CAS  Google Scholar 

  15. A. Hart and N. Gnanendran, Energy Procedia, 1, 697 (2009).

    Article  CAS  Google Scholar 

  16. M. J. Tuinier, M. van Sint Annaland, G. J. Kramer and J. A. M. Kuipers, Chem. Eng. Sci., 65, 114 (2010).

    Article  CAS  Google Scholar 

  17. G. Xu, L. Li, Y. Yang, L. Tian, T. Liu and K. Zhang, Energy, 42, 522 (2012).

    Article  CAS  Google Scholar 

  18. G. P. Willems, M. Golombok, G. Tesselaar and J. J. H. Brouwers, AIChE J., 56, 150 (2010).

    CAS  Google Scholar 

  19. D. Clodic, R. El Hitti, M. Younes, A. Bill and F. Casier, CO 2 capture by anti-sublimation Thermo-economic process evaluation, in: Fourth Annual Conference on Carbon Capture & Sequestration, Alexandria, USA, 2 (2005).

    Google Scholar 

  20. C.-F. Song, Y. Kitamura, S.-H. Li and K. Ogasawara, Int. J. Greenhouse Gas Control, 7, 107 (2012).

    Article  CAS  Google Scholar 

  21. C. F. Song, Y. Kitamura and S.H. Li, Appl. Energy, 98, 491 (2012).

    Article  CAS  Google Scholar 

  22. J. A. Ritter and A. D. Ebner, Carbon dioxide separation technology: R&D needs for the chemical and petrochemical industries, Chemical Industry Vision2020 Technology Partnership, in, Oak Ridge National Laboratory (2007).

    Google Scholar 

  23. Nor Syahera. M, Cryogenic separation of CO2 from methane using dynamic packed bed, Universiti Teknologi PETRONAS (2012).

    Google Scholar 

  24. Abulhassan. A, Nor Syahera M., K. Maqsood and S. Ganguly, Minimization of energy consumption in counter current switched cryogenic packed beds during purification of natural gas with high carbon dioxide content, Chem. Eng. Technol. (Revision submitted, 2014).

    Google Scholar 

  25. Abulhassan. A, S. Ganguly, and A. B. M. Shariff, Simulation of cryogenic packed bed using 1-dimensional pseudo homogeneous model, International Oil and Gas Symposium and Exhibition (IOGSE 2013), Sabah, Malaysia (2013).

    Google Scholar 

  26. K. Maqsood, S. Ganguly and A. B.M. Shariff, Synthesis of cryogenic distillation networks for maximum methane recovery from natural gas with minimum energy usage, International Oil and Gas Symposium and Exhibition (IOGSE 2013), Sabah, Malaysia (2013).

    Google Scholar 

  27. V. Kumar, A. Sharma, I.R. Chowdhury, S. Ganguly and D.N. Saraf, Fuel Process. Technol., 73, 1 (2001).

    Article  CAS  Google Scholar 

  28. R. A. Russel, Chem. Eng., 53 (1983).

    Google Scholar 

  29. B. S. Hofeling and J. D. Seader, AIChE J., 24, 1131 (1978).

    Article  Google Scholar 

  30. L.M. Naphtali and D. P. Sandholm, AIChE J., 17, 148 (1971).

    Article  CAS  Google Scholar 

  31. T. Eggeman and S. Chafin, Chem. Eng. Prog., 101 (2005).

    Google Scholar 

  32. F. Kurata, Solubility of solid carbon dioxide in pure light hydrocarbons and mixtures of light hydrocarbons, Research Report RR-10, Gas Processors Association. Tulsa, OK (1974).

    Google Scholar 

  33. B. ZareNezhad and T. Eggeman, Cryogenics, 46, 840 (2006).

    Article  CAS  Google Scholar 

  34. K. Carter and K. D. Luks, Fluid Phase Equilib., 243, 151 (2006).

    Article  CAS  Google Scholar 

  35. H. P. Loh, Jenifer Lyons, Process equipment cost estimation, DOE, Pittsburgh (2002).

    Book  Google Scholar 

  36. M. J. Tuinier, H. P. Hamers and M. van Sint Annaland, Int. J. Greenhouse Gas Control, 5, 1559 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saibal Ganguly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maqsood, K., Pal, J., Turunawarasu, D. et al. Performance enhancement and energy reduction using hybrid cryogenic distillation networks for purification of natural gas with high CO2 content. Korean J. Chem. Eng. 31, 1120–1135 (2014). https://doi.org/10.1007/s11814-014-0038-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0038-y

Keywords

Navigation