Skip to main content
Log in

A regrowth method for the fabrication of high-quality ZnO films and their application in fast-response UV sensors

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this study, we fabricated high-quality ZnO films using hydrothermally grown ZnO nanorods and a spin-coated Al-doped ZnO film by using regrowth method. The phtoluminescence (PL) intensity ratios of the near-band-edge (NBE) to deep-level (DL) emission peaks (I NBE /I DL ) for ZnO nanorods (samples 1) and ZnO film (sample 2) were 2.13 and 24.3, respectively. The redshift from 3.288 (sample 2) to 3.278 eV (sample 1) and low I NBE /I DL ratio in PL spectra were attributed to large mismatch between ZnO and Si substrate, resulting in a residual stress and the low optical properties. In case of sample 2, the photocurrent was sharply increased without the exponential rise because of enhanced optical properties of ZnO film by regrowth. The regrowth method is expected to represent a possible route for fast-response ultraviolet sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. B. Bashar, M. Suja, M. Morshed, F. Gao and J. Liu, Nanotechnology 27, 065204 (2016).

    Article  ADS  Google Scholar 

  2. Y. Tchoe, C-H. Lee, J. B. Park, H. Baek, K. Chung, J. Jo, M. Kim and G-C. Yi, ACS Nano 10, 3114 (2016).

    Article  Google Scholar 

  3. M. Thepnurat, T. Chairuangsri, N. Hongsith, P. Ruankham and S. Choopun, ACS Appl. Mater. Interfaces 7, 24177 (2015).

    Article  Google Scholar 

  4. S. Kim, G. Nam, H. Yoon, H. Park, H. Choi, J. S. Kim, J. S. Kim, D. Y. Kim, S-O Kim and J-Y. Leem, Electron. Mater. Lett. 10, 869 (2014).

    Article  ADS  Google Scholar 

  5. S. K. Shaikh, S. I. Inamdar, V. V. Ganbavle and K. Y. Rajpure, J. Alloy. Compd. 664, 242 (2016).

    Article  Google Scholar 

  6. Y. Kim, J. Choe, G. Nam, I. Kim, S-H. Lee, S. Kim, D. Y. Kim, S-O Kim and J-Y. Leem, J. Korean Phys. Soc. 66, 224 (2015).

    Article  ADS  Google Scholar 

  7. K. H. Kim and E. Arifin, Met. Mater. Int. 13, 489 (2007).

    Article  Google Scholar 

  8. M. Thambidrai, J. Y. Kim, C-M. Kang, N. Muthukumarasamy, H-J. Song, J. Song, Y. Ko, D. Velauthapillai and C. Lee, Renew. Energy 66, 433 (2014).

    Article  Google Scholar 

  9. D. Garcia-Alonso, S. E. Potts, C. A. A. van Helvoirt, M. A. Verheijen and W. M. M. Kessels, J. Mater. Chem. C 3, 3095 (2015).

    Article  Google Scholar 

  10. D-T. Phan and G-S. Chung, Curr. Appl. Phys. 12, 521 (2012).

    Article  ADS  Google Scholar 

  11. A. Osipov, S. A. Kukushkin, N. A. Feoktistov, A. Osipova, N. Venugopal, G. D. Verma, B. K. Gupta and A. Mita, Thin Solid Films 520, 6836 (2012).

    Article  ADS  Google Scholar 

  12. B. H. Lin, W. R. Liu, S. Yang, C. C. Kuo, C-H. Hsu, W. F. Hsieh, W. C. Lee, Y. J. Lee, M. Hong and J. Kwo, Cryst. Growth Des. 11, 2846 (2011).

    Article  Google Scholar 

  13. T. I. Wong, H. R. Tan, D. Sentosa, L. M. Wong, S. J. Wang and Y. P. Feng, J. Phys. D: Appl. Phys. 45, 415306 (2012).

    Article  ADS  Google Scholar 

  14. W. Wang, C. Chen, G. Zhang, T. Wang, H. Wu, Y. Liu and C. Liu, Nanoscale Res. Lett. 10, 91 (2015).

    Article  ADS  Google Scholar 

  15. S. K. Panda and C. Jacob, Solid State Electron. 73, 44 (2012).

    Article  ADS  Google Scholar 

  16. Z. Wang, X. Zhan, Y. Wang, S. Muhammad, Y. Huang and J. He, Nanoscale 4, 2678 (2012).

    Article  ADS  Google Scholar 

  17. T. P. Chen, S. J. Young, S. J. Chang, C. H. Hsiao and C. S. Huang, J. Electrochem. Soc. 159, J153 (2012).

    Article  Google Scholar 

  18. I-C. Yao, T-Y. Tseng and P. Lin, Sensor. Actuat. APhys. 178, 26 (2012).

    Article  Google Scholar 

  19. H-F. Pang, Y-Q. Fu, Z-J. Li, Y. Li, J-Y. Ma, F. Placido, A. J. Walton and X-T. Zu, Sensor. Actuat. A-Phys. 193, 87 (2013).

    Article  Google Scholar 

  20. A. Rajan, H. K. Yadav, V. Gupta and M. Tomar, J. Mater. Sci. 48, 7994 (2013).

    Article  ADS  Google Scholar 

  21. B. Saravanakumar, R. Mohan, K. Thiyagarajan and S-J. Kim, J. Alloy. Compd. 580, 538 (2013).

    Article  Google Scholar 

  22. F. Yi, Q. Liao, X. Yan, Z. Bai, Z. Wang, X. Chen, Q. Zhang, Y. Huang and Y. Zhang, Physica E 61, 180 (2014).

    Article  ADS  Google Scholar 

  23. P. S. Shewale, N. K. Lee, S. H. Lee, K. Y. Kang and Y. S. Yu, J. Alloy. Compd. 624, 251 (2015).

    Article  Google Scholar 

  24. Y. Luo, B. Yin, H. Zhang, Y. Qiu, J. Lei, Y. Chang, Y. Zhao, J. Ji and L. Hu, Appl. Surf. Sci. 361, 157 (2016).

    Article  ADS  Google Scholar 

  25. G. Nam, B. Kim, Y. Park, S. Park, J. Moon, D. Y. Kim, S-O. Kim and J-Y. Leem, J. Mater. Chem. C 2, 9918 (2014).

    Article  Google Scholar 

  26. H. Kanber, R. J. Cipolli, W. B. Henderson and J. M. Whelan, J. Appl. Phys. 57, 4732 (1985).

    Article  ADS  Google Scholar 

  27. Y. G.Wang, S. P. Lau, X. H. Zhang, H. H. Hng, H. W. Lee, S. F. Yu and B. K. Tay, J. Cryst. Growth 259, 335 (2003).

    Article  ADS  Google Scholar 

  28. C. Park, J. Lee and W. S. Chang, J. Phys. Chem. C 119, 169894 (2015).

    Google Scholar 

  29. Y. M. Lu, X. P. Li, S. C. Su, P. J. Cao, F. Jia, S. Han, Y. X. Zeng, W. J. Liu and D. L. Zhu, J. Lumin. 152, 254 (2014).

    Article  Google Scholar 

  30. L. M. Kukreja, P. Misra, J. Fallert, D. M. Phase and H. Kalt, J. Appl. Phys. 112, 013525 (2012).

    Article  ADS  Google Scholar 

  31. T. Monteiro, C. Boemare, E. Rita, E. Alves and M. J. Soares, J. Appl. Phys. 93, 8995 (2003).

    Article  ADS  Google Scholar 

  32. V. Khranovskyy, I. Shtepliuk, I. G. Ivanov, I. Tsiaoussis and R. Yakimova, Carbon 99, 295 (2016).

    Article  Google Scholar 

  33. A. K. Das, P. Misra, R. Kumar, T. Ganguli, M. K. Slingh, D. M. Phase and L. M. Kukreja, Appl. Phys. A 114, 1119 (2014).

    Article  ADS  Google Scholar 

  34. J. H. Noh, I-S. Cho, S. Lee, C. M. Cho, H. S. Han, J-S. An, C. H. Kwak, J. Y. Kim, H. S. Jung, J-K. Lee and K. S. Hong, Phys. Status Solidi A 206, 2133 (2009).

    Article  ADS  Google Scholar 

  35. H-M. Chiu, Y-T. Chang, W-W. Wu and J-M. Wu, ACS Appl. Mater. Interfaces 6, 5183 (2014).

    Article  Google Scholar 

  36. M. S. Kim, G. Nam, D. Kim, H. E. Kim, H. Kang, W. B. Lee, H. Choi, Y. Kim and J-Y. Leem, Korean J. Met. Mater. 53, 139 (2015).

    Google Scholar 

  37. V. A. Fonoberov, K. A. Alim and A. A. Balandin, Phys. Rev. B 73, 165317 (2006).

    Article  ADS  Google Scholar 

  38. A. Zawadzka, P. Płóociennik, Y. E. Kouari, H. Bongharraf and B. Sahraoui, J. Lumin. 169, 483 (2016).

    Article  Google Scholar 

  39. O. F. Farhat, M. M. Halim, M. J. Abdullah, M. K. M. Ali, N. M. Ahmed and N. K. Allam, Appl. Phys. A. 119, 1197 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Young Leem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nam, G., Kim, S., Jo, E. et al. A regrowth method for the fabrication of high-quality ZnO films and their application in fast-response UV sensors. Journal of the Korean Physical Society 71, 47–53 (2017). https://doi.org/10.3938/jkps.71.47

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.71.47

Keywords

Navigation