Skip to main content
Log in

Thermal control analysis of a primary mirror for large-aperture telescope

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Extraneous thermal loads on the primary mirror of a large-aperture telescope directly influence the optical performance of the telescope through temperature gradients within the mirror and thermal boundary layer at the face sheet. In this paper, we propose a new thermal control system consisting of a flushing and sucking system for eliminating the excessive heat of a primary mirror. First, a 2.8 m-aperture lightweighted primary mirror is fabricated. Second, a thermo-optic analysis using finite element analysis is conducted in natural and forced convection. Finally, the optical performance denoted by Zernike polynomials with and without our proposed thermal control system is evaluated and examined. The comparative results reveal that the image quality of the primary mirror in forced convection is significantly enhanced with obvious reduction of optical surface distortion, thereby demonstrating the effectiveness of our proposed thermal control system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Y. Bely, The Design and Construction of Large Optical Telescopes (Springer, New York, 2003).

    Google Scholar 

  2. J. Cheng, The Principles of Astronomical Telescope Design (Springer, New York, 2010).

    Google Scholar 

  3. D. R. Neill, Proc. SPIE 7424, 742404 (2009).

    Article  Google Scholar 

  4. V. Bumer and P. Sacré, Proc. SPIE 2871, 657 (1997).

    Article  ADS  Google Scholar 

  5. L. C. Roberts, Jr. and P. D. Figgis, Proc. SPIE 4837, 264 (2003).

    Article  ADS  Google Scholar 

  6. R. Volkmer et al., Proc. SPIE 7739, 77391O (2010).

    Article  Google Scholar 

  7. R. K. Banyal, B. Ravindra and S. Chatterjee, Opt. Express 21, 7065 (2013).

    Article  ADS  Google Scholar 

  8. F. M. Gottsche and F. S. Olesen, Remote Sens. Environ. 76, 337 (2001).

    Article  ADS  Google Scholar 

  9. K. S. Park, J. H. Lee and S. K. Youn, Opt. Eng. 44, 053002 (2005).

    Article  ADS  Google Scholar 

  10. K. B. Doyle, V. L. Genberg and G. J. Michels, Integrated Optomechanical Analysis (SPIE Press, Washington, 2002).

    Book  Google Scholar 

  11. H. Wang et al., Opt. Eng. 55, 035105 (2016).

    Article  ADS  Google Scholar 

  12. H. Kihm, H. S. Yang and Y. W. Lee, J. Korean Phys. Soc. 62, 1239 (2013).

    Article  ADS  Google Scholar 

  13. K. Ahn, H. G. Rhee and H. S. Yang, J. Korean Phys. Soc. 67, 1882 (2015).

    Article  ADS  Google Scholar 

  14. V. N. Mahajan, Appl. Opt. 33, 8125 (1994).

    Article  ADS  Google Scholar 

  15. M. Iye, T. Noguchi, Y. Mikami et al., Astron. Soc. Pacific 103, 712 (1991).

    Article  ADS  Google Scholar 

  16. L. Zago, Proc. SPIE 2871, 726 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufeng Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Y., Wang, J., Ren, G. et al. Thermal control analysis of a primary mirror for large-aperture telescope. Journal of the Korean Physical Society 71, 28–36 (2017). https://doi.org/10.3938/jkps.71.28

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.71.28

Keywords

Navigation